Производство алюминия из глинозема

Производство алюминия

Производство алюминия из глинозема

Технологический процесс производства алюминия включает три основных этапа:

  • 1. Создание глинозема из алюминиевых руд;
  • 2. Создание из глинозема алюминия;
  • 3. Процесс рафинирования алюминия.

И при этом необходимо использование такого оборудования:

  • оборудование для системы центральной раздачи глинозема;
  • электролизер;
  • катодная ошиновка;
  • установки сухой газоочистки;
  • монтажные, технологические и литейные краны;
  • аспирационные установки;
  • оборудование литейного цеха;
  • оборудование анодно-монтажного цеха;
  • металлоконструкции производственных корпусов.

Создание глинозема из руд — этап производства алюминия

Глинозем можно получить тремя методами: кислотным, щелочным и электролитическим. Самым популярным является щелочной метод.

Суть метода заключается в том, что алюминиевые растворы очень быстро начинают разлагаться при введении гидроокиси алюминия, а раствор, который остался от разложения после выпаривания при интенсивном перемешивании при температуре 170 С, может снова растворить глинозем, который содержится в бокситах. Данный способ имеет такие главные стадии: 1.

Подготовка боксита, которая подразумевает его дробление и измельчение в специальных мельницах. В мельницы отправляют едкую щелочь, боксит и немного извести. Пульпу, которая получилась, направляют на выщелачивание. 2. Выщелачивания боксита подразумевает его химическое разложение от соединения с водным раствором щелочи.

При этом гидраты окиси алюминия при соединении со щелочью в раствор переходят в форме алюмината натрия, а кремнезем, который содержится в боксите, соединяясь со щелочью, в раствор переходит в форме силиката натрия. В растворе эти соединения: алюминат натрия и силикат натрия формируют нерастворимый натриевый алюмосиликат. В этот остаток переходят окислы железа и титана, которые предают остатку красный оттенок.

Такой остаток – это красный шлам. Когда растворение полученного алюмината натрия завершается, его разводят водным раствором щелочи при понижении температуры до 100°С. 3. Отделение красного шлама и алюминатного раствора друг от друга происходит благодаря промывке в сгустителях. После чего красный шлам оседает, а оставшийся алюминатный раствор фильтруют. 4. Разложение алюминатного раствора.

Его фильтруют и отправляют в крупные емкости с мешалками. Из данного раствора при охлаждении до 60°С и перемешивании постоянном выделяется гидроокись алюминия. Из-за того что процесс протекает неравномерно и очень медленно, а рост кристаллов гидроокиси алюминия очень важен при дальнейшей обработке, то в эти емкости с мешалками — декомпозеры ещё добавляют много твердой гидроокиси. 5.

Получение гидроокиси алюминия осуществляется в вакуум-фильтрах и гидроциклонах. Большую часть гидроокиси как затравочный материал возвращают к процедуре декомпозиции. После водной промывки остаток отправляется на кальцинацию; и фильтрат тоже возвращается в процесс.

6. Обезвоживание гидроокиси алюминия — завершающая стадия производства глинозема. Она проходит в трубчатых, постоянно вращающихся печах. Сырая гидроокись алюминия, когда проходит через печь, полностью высушивается и обезвоживается.

Создание из глинозема алюминия при производстве также проходит в несколько этапов

1. Электролиз окиси алюминия происходит при температуре в электролизере — 970°С. Электролизер имеет футерованную углеродистыми блоками ванну, к которой подключается электрический ток. Выделившийся жидкий алюминий собирается на угольном основании, и оттуда его регулярно откачивают.

В электролит сверху погружены угольные аноды, сгорающие в атмосфере кислорода, который выделяется из окиси алюминия, и при этом выделяетс я окись или двуокись углерода. 2.Электролиз хлорида алюминия осуществляется путем превращения окиси алюминия в реакционном сосуде в хлорид алюминия. После чего в изолированной ванне осуществляется электролиз хлорида алюминия.

Хлор, который при этом выделился, отсасывается и направляется для вторичного использования. А алюминий выпадает в осадок на катоде.

3.Восстановление марганцем хлорида алюминия, при этом освобождается алюминий. За счет управляемой конденсации выделяются загрязнения, связанные с хлором, из потока хлорида марганца.

Когда происходит освобождение хлора, хлорид марганца превращается в окись марганца, которая потом восстанавливается до состояния марганца, который пригоден к вторичному использованию.

Процесс рафинирования алюминия при производстве алюминия

Рафинирующий электролиз с разложением водных солевых растворов для алюминия невозможен.

Так как степень очистки промышленного алюминия, который получен путем электролиза криолитоглиноземного расплава, для некоторых целей будет недостаточна, то из отходов металла и промышленного алюминия благодаря рафинированию получают алюминий еще более чистый. Самым распространённым методом рафинирования является трехслойный электролиз.

Алюминий применяется в изготовлении взрывчатых веществ (алюмотол, аммонал). Широко используются разнообразные соединения алюминия. Производство и потребление алюминия постоянно растет, сильно опережая по темпам роста производство меди, стали, цинка, свинца.

Текст, Ян Волховский, promplace.ru

Фото с сайта drugoi.livejournal.com

Под воздействием высоких температур удается получить металлы из оксидов. Процесс осуществляется в доменных печах с использованием металлических и неметаллических восстановителей, которые вступая в реакцию с кислородом, вытесняют металл из…
Производство и потребление данного металла алюминия постоянно растет, сильно опережая по темпам роста производство меди, стали, цинка, свинца. В статье рассмотрен технологический процесс и оборудование для производства алюминия…
Сталь – это железоуглеродистый сплав, который содержит около 1,5% углерода, если его содержание увеличивается, то значительно повышается хрупкость и твердость стали. Основной исходный материал для производства стали — стальной лом и передельный чугун….
Для получения металла высшей пробы с минимальным количеством примесей используется электролитический способ добычи. С момента открытия месторождения и до завершающей стадии переплавки сырья в готовое ……
Если говорить об общем объеме, то на долю пирометаллургических способов производства меди приходится более трех четвертей выпуска этого металла. Наряду с большинством цветных металлов, медь с каждым годом становится все более дефицитной, а основная добыча материала…
По распространенности кремний в земной коре занимает 2-ое пространство следуя за кислорода, сталкивается основным образом в повторяющемся виде кислородных синтезов (силикаты, кварц и т.д.). Высочайшей частоты кремний применяется в полупроводниковых техниках…

Источник: https://promplace.ru/articles/proizvodstvo-alyuminiya-67

Особенности производства алюминия: расчет сырья и технология добычи

Производство алюминия из глинозема

Алюминий представляет собой химический элемент, который занимает лидирующую позицию среди самых распространенных металлов в земной коре, а также наиболее часто используемых. Его содержание в земле приравнивается к 9%. Встречается только в виде соединений, представленных оксидом алюминия или глиноземом. Именно в глине содержится около 30% такого оксида.

Данный металл выгодно отличается среди остальных видов благодаря своим свойствам. А это – отличная пластичность, высокие коэффициенты тепло- и электропроводности, небольшая плотность. Данная статья расскажет вам о технологиях производства и добычи алюминия и его сплавов в мире, а также о важных факторах таких мероприятий.

Для того чтобы добывать глинозем в природных условиях, а затем извлекать из него алюминий, потребуется достаточно большое количество оборудования:

  • Машины для проведения раздачи глинозема;
  • Катодная ошиновка;
  • Установка по газоочистки сухим методом;
  • Электролизер;
  • Краны монтажного, линейного и технического назначения;
  • Оборудование, необходимое для литейного и анодно-монтажного цехов.

Для производства алюминия необходимо не только большое количество оборудования, но и помещение достаточно большой площади, а также мощная электросеть.

Дело в том, что процесс электролиза происходит в специальных ваннах при температуре 9600С и силе тока около 250000 А.

Для организации такого производственного процесса потребуется огромное количество электроэнергии, именно поэтому крупные производители этого металла стараются располагать свои цеха в непосредственной близости от гидроэлектростанций, поставляющих более дешевую энергию. Далее рассмотрено сырье для производства алюминия.

В видео ниже рассказано о производстве алюминия:

Для того чтобы получить алюминий, необходимо в электролизер загрузить анодную массу, глинозем, а также фторсоль. Во время действия электролиза из глины получается окислы углерода, а также фтористые соединения в газообразном состоянии. При этом часть анодной массы расходуется в виде пены, которая снимается с поверхности самого электролита.

Чрезмерный расход анодной массы, а также фтористых солей может свидетельствовать о низком качестве самой массы, а также о неправильном обслуживании использованного оборудования.

В теории для получения 1 кг алюминия потребуется 1,9 кг глинозема. Остальная его часть включает в себя всевозможные примеси и потери в процессе производства. Однако на практике сырья может потребоваться гораздо больше, в зависимости от типа глины, используемого оборудования и прочих факторов.

Далее рассмотрена технология литья, производства сварки алюминия аргоном.

Технологии производства алюминия

Технология производства (получения) алюминия включает в себя следующие стадии:

  1. Добыча глинозема (окись алюминия) из алюминиевых руд.
  2. Выделение из окиси алюминия.
  3. Полная очистка алюминия.

Получить глинозем можно при помощи кислотного, щелочного и электролитического способа. Первый вариант предпочтительнее использовать при работе с высокими сортами сырья. Второй способ подразумевает быстрое разложение алюминиевого раствора путем введения алюминиевой гидроокиси. Образовавшийся после такой реакции раствор подвергается выпариванию с целью последующего использования для глинозема.

Читайте также  Чем очистить алюминий до блеска?

Первым этапом добычи алюминия является тщательное дробление боксита с применением едкой щелочи или извести.

Затем происходит помещение сырья в автоклавы, где при температуре 250°С происходит его разложение и выделение алюмината натрия.

Получившийся натриевый раствор проходит этап очистки в специальных сгустителях, где он отделяется от шлама. Очищенный раствор прогоняется через фильтры и направляется в емкости с регулярным помешиванием.

В вакуумных фильтрах и циклонах происходит выделение окиси алюминия, часть которой используется для затравки, а остальное количество направляется на кальцинацию. Это процесс также называется обезвоживанием и происходит при температуре около 1300°С. В среднем для получения 2 т окиси потребуется энергии до 8,5 кВт/ч. получившееся достаточно прочное соединение еще не является чистым алюминием.

Про процесс электролиза в производстве алюминия расскажет этот видеоролик:

Главным оборудованием на данном этапе является специальная ванна (электролизер), оснащена углеродистыми блоками. К ней организуют подведение электрического тока мощностью до 150000 А, а в саму емкость загружают угольные аноды, которые сгорают после выделения чистого кислорода и образовывают окись углерода.

Аноды подразделяются на два вида:

  • Полученные путем обжига угольных блоков, масса которых может превышать 1 т.
  • Самообжигающиеся, включающие в себя угольные брикеты, распекающиеся при электролизе.

Рафинация металла

Наиболее популярным методом получения алюминия является трехслойный электролиз, который проходит в специальных ваннах, футерованных магнезитом. В качестве анода выступает непосредственно сам расплавленный алюминий. Он находится в самом нижнем слое.

Чистый же металл, который растворяется в анодном слое благодаря процессу электролита, поднимается на поверхность выступая катодом. Рафинированный алюминий в минимальном соотношении содержит магний, титан и прочие примеси. И уже на данном этапе получает вид товарной продукции, будь-то слитки, чушки или проволока.

Про Россию и другие страны с заводами по добыче-производству алюминия читайте ниже.

Наиболее крупным производителем алюминия является компания «Русал», которая производит более 4 млн. т алюминия в год. Также в список крупнейших производителей алюминия в России входят:

  • Компания «СУАЛ», специализирующаяся на работе с алюминиевыми сплавами;
  • АО «БАЗ», работающее на производстве и добыче глинозема и гидрооксида алюминия;
  • ВгАЗ, завод по производству первичного алюминия.

Производство алюминия представляет собой сложный процесс, требующий необходимого оборудования, знания технологии, соблюдения особых условий и трудовых затрат. Зато изготовление различных изделий из алюминия — дело популярное.

О перспективах производства алюминия расскажет это видео:

Источник: http://stroyres.net/metallicheskie/vidyi/tsvetnyie/alyuminiy/osobennosti-proizvodstva-i-dobyichi.html

Производство глинозема

Производство алюминия из глинозема

Технология производства алюминия сос­тоит из двух стадий: первая — производства глинозема и вторая — электролитическое получение алюминия из глино­зема. За рубежом практически весь глинозем получают из бокситов в основном способом Байера (К.И.

Байер — австрий­ский инженер, работавший в России), на отечественных за­водах глинозем получают из бокситов способом Байера и из бокситов и нефелинов способом спекания. Оба эти способа относятся к щелочным методам выделения глинозема из руд.

Способ Байера экономически целесообразно использовать для переработки бокситов с небольшим содержанием SiO2 (с кремниевым модулем Al2O3/SiO2 более 5—7), поскольку при росте количества SiO2 все больше Al2O3 и используемой в процессе щелочи теряются из-за образования химического соединения Na2O • Al2O3 • 2SiO2 • 2H2O.

Для переработки бокситов с кремниевым модулем менее 5—7 более экономичным является способ спекания. В связи с истощением богатых глиноземом месторождений боксита и вовлечением в производство более бедных бокситов, доля способа Байера в производстве глинозема снижается и воз­растает доля способа спекания.

Способ Байера

Способ Байера — способ выделения глинозема из боксита — основан на выщелачивании, цель которого растворить содер­жащийся в боксите оксид алюминия Al2O3, избежав перевода в раствор остальных составляющих боксита (SiO2, Fe2O3 и др.). В основе способа лежит обратимая химическая реак­ция:

Al2O3 • n H2O + 2NaOH = Na2O • Al2O3 + (n + 1)H2O.

При протекании реакции вправо глинозем в виде алюмината натрия переходит в раствор, а при обратном течении реак­ции образующийся гидратированный Al2O3 выпадает в осадок. Упрощендая схема производства глинозема по способу Байера показана на рис. 244. Ниже описаны основные операции этого способа.

1. Подготовка боксита к выщелачиванию. Боксит дробят и размалывают до фракций размером 0,05—0,15 мм в среде добавляемой щелочи и оборотного раствора щелочи NaОН, добавляют также немного извести, активизирующей выщелачивание.

2. Выщелачивание. Полученную при помоле пульпу направляют на выщелачивание. Для полного протекания приведенной выше реакции вправо (образования алюмината натрия) необходимы щелочная среда, высокое давление (~ 3 МПа), нагрев пульпы до 100—240 °С (в зависимости от сорта боксита) и ее длительное (около 2 ч) перемешивание.

Такие условия обеспечиваются в автоклавах — сосудах, работающих под давлением. Применяемые автоклавы представляют собой (рис.245) стальной цилиндрический сосуд диаметром 1,6—2,5 и высотой 13,5—17,5 м. Давление в автоклаве 2,5—3,3 МПа, пульпу подают сверху, снизу через патрубок 2 с барботером 3 — пар, который нагревает и перемешивает ее.

Из автоклава пульпа выдавливается через трубу 1.

Автоклав для выщелачивания боксита

Пульпу обычно пропускают через батарею из 6—10 последовательно установленных автоклавов, где в течение ~ 2 ч содержащийся в пульпе в виде Al2O3 • Н2O, Al2O3 • 3Н2O и Al2O3 глинозем реагирует со щелочью (реакция приведена выше), переходя в Na2O • Al2O3.

В первый автоклав пульпу подают насосом, предварительно подогрев до ~ 150 °С, из последнего автоклава пульпа попадает в два автоклава-испарителя, в которых давление снижается до атмосферного.

Про­дуктом является автоклавная пульпа, состоящая из алюми- натного раствора (содержащего Na2O • Al2O3) и шлама (осадка, в который выпадают остальные примеси боксита).

3.

Разделение алюминатного раствора и шлама после раз­бавления пульпы водой производят в сгустителях (отстойни­ках) — сосудах диаметром 15—50 м, на дне которых оседает шлам, а через верх сливается отстоявшийся алюминатный раствор. Его дополнительно пропускают через фильтры и направляют на следующую операцию — декомпозицию. Получае­мый красный шлам (окраску ему придают частицы Fe2O3) идет в отвал, шлам содержит, %: Al2O3 12—18, SiO2 6—11, Fe2O3 44-50, CaO 8-13.

4.

Разложение алюминатного раствора, называемое также декомпозицией или выкручиванием проводят с целью перевес­ти алюминий из «раствора в осадок в виде Al2O3 • 3Н2O, для чего обеспечивают течение приведенной выше реакции выще­лачивания влево, в сторону образования Al2O3 • 3Н2O. Что­бы указанная реакция шла влево, необходимо понизить дав­ление (до атмосферного), разбавить и охладить раствор, ввести в него затравки (мелкие кристаллы гидрооксида алю­миния) и пульпу для получения достаточно крупных кристал­лов Al2O3 • 3Н2O перемешивать в течение 50—90 ч.

Этот процесс осуществляют в серии установленных после­довательно и соединенных перепускными сифонами декомпозеров, через которые последовательно проходит пульпа (алюминатный раствор с выпадающими кристаллами гидроокси­да алюминия).

В серии устанавливают 10—11 декомпозеров с механическим перемешиванием или 16—28 декомпозеров с воз­душным перемешиванием пульпы. Первые представляют собой баки диаметром до 8 м, в которых перемешивание осуществ­ляют вращением вокруг вертикальной оси волокуш (гребков).

Декомпозеры второго типа, преимущественно применяемые в настоящее время, представляют собой цилиндрические баки высотой 25—35 м и объемом до 3000 м3; снизу в них подают сжатый воздух, перемешивающих пульпу.

5. Отделение кристаллов гидрооксида алюминия от раствора и классификация кристаллов по крупности. После декомпозиции пульпа поступает в сгустители, где гидро­оксид отделяют от раствора.

Полученный гидрооксид в гид­росепараторах разделяют на фракцию с размером частиц 40—100 мкм и мелкую фракцию (размером < 40 мкм), которую используют в качестве затравки при декомпозиции.

Крупную фракцию промывают, фильтруют и направляют на кальцинацию.

6. Кальцинацию или обезвоживание гидрооксида алюминия осуществляют в футерованных шамотом трубчатых вращающихся печах диаметром 2,5—5 и длиной 35—110 м, отапливаемых природным газом или мазутом.

Гидрооксид медленно перемещается вдоль вращающегося барабана навстречу потоку горячих газов,   температура которых повышается от 200—300 °С в месте загрузки до ~ 1200 °С вблизи горелки у разгрузочного торца барабана.

При нагреве гидрооксида идет реакция: Al2O3 • 3H2O = Al2O3 + 3Н2O, заканчивающая­ся при 900 °С. Продуктом является глинозем Al2O3 (порошок белого цвета).

Извлечение глинозема при использовании описанного спо­соба Байера составляет около 87 %. На производство 1 т глинозема расходуют 2,0—2,5 т боксита, 70—90 кг NaOH, около 120 кг извести, 7—9 т пара, 160—180 кг мазута (в пересчете на условное топливо) и около 280 кВт • ч элект­роэнергии.

Способ спекания

Способ применяют для получения глинозема из высококрем­нистых (> 6—8 % SiO2) бокситов с кремниевым модулем менее 5—7 и из нефелиновых руд; способ пригоден также для пере­работки любого алюминиевого сырья.

Сущность способа заключается в получении твердых алю­минатов путем их спекания при высоких (~ 1300 °С) темпе­ратурах и в последующем выщелачивании полученного спека.

Получение глинозема из бокситов

Основные стадии этого процесса следующие.

Подготовка к спеканию. Боксит и известняк после дроб­ления измельчают в мельницах в среде оборотного содового раствора с добавкой свежей соды Na2CO3, получая пульпу с влажностью 40 %.

Спекание ведут в отапливаемых трубчатых вращающихся печах диаметром до 5 и длиной до 185 м. Температура в пе­чи повышается от 200—300 °С в месте подачи пульпы до ~ 1300 °С в разгрузочном конце у горелки. При нагреве оксид алюминия превращается в водорастворимый алюминат натрия:

Читайте также  Как варить алюминий электродом инвертором?

Al2O3 + Na2CO3 = Na2O • Al2O3 + CO,

а кремнезем связывается в малорастворимые силикаты: SiO2 + 2СаО = 2СаО • Si02. С содой реагирует также Fe2O3 боксита, образуя NaaO • Fe203. Эти химические соединения спекаются, образуя частично оплавленные куски — спек.

После обжиговой печи спек охлаждают в холодильниках, дробят до крупности 6—8 мм и направляют на выщелачивание.

Выщелачивание ведут горячей водой проточным методом в аппаратах различной конструкции: диффузорах (цилиндрических сосудах, куда порциями загружают и выгружают спек), в конвейерных выщелачивателях и др. Наиболее совершенными являются трубчатые выщелачиватели непрерывного действия (рис. 246).

Загружаемый через бункер 1 в сосуд высотой 26 м спек благодаря непрерывной выгрузке секторными разгружателями 2 движется вниз и промывается встречным потоком воды. В воде растворяется алюминат натрия, вода разлагает также феррит натрия Na2O • Fe2O3 и Fe2O3 выпадает в осадок. Продуктами выщелачивания являются алюминатный раствор и красный шлам, содержащий Fe2O3, Al2O3, SiO2, CaO.

 В алюминатный раствор переходит немного кремнезема в виде гидросиликатов, в связи с чем раствор подвергают обескремниванию.

Обескремнивание алюминатного раствора осуществляет в батарее автоклавов длительной (~ 2,5 ч) выдержкой при температуре 150—170 °С.

В этих условиях вырастают кристаллы нерастворимого в воде соединения Na2O • Al2O3 • 2SiO2 • 2Н2О (иногда к раствору добавляют известь, в этом случае образуются кристаллы СаО • Al2O3 •2SiO2 • 2H2O). Из автоклавов выходит пульпа, состоящая из алюминатного раствора и осадка — белого шлама.

Далее раствор отделяют от белого шлама путем сгущения и фильтрации. Белый шлам идет в ших­ту для спекания, а раствор направляют на карбонизацию.

Карбонизацию проводят с целью выделения алюминия в осадок Al2O3 • 3Н2O (карбонизация заменяет декомпозицию в способе Байера).

Карбонизацию осуществляют в сосудах цилиндрической или цилиндроконической формы объемом до 800 м3 пропусканием через раствор отходящих газов спекательных печей, содержащих 10—14 % СO2.

Газы перемешивают раствор, а СO2 разлагает алюминат натрия: Na2O • Al2O3 + СO2 + 3Н2O = Al2O3 • 3Н2O + Na2CO3 и гидроксид алюминия выпадает в осадок.

Далее проводят те же технологические операции, что и в способе Байера: отделение Al2O3 • 3Н2O от раствора и кальцинацию — обезвоживание гидроксида алюминия прокали­ванием в трубчатых печах с получением глинозема Al2O3.

Примерный расход материалов на получение 1 т глино­зема, т: боксита 3,2—3,6; известняка 1,35; извести 0,025; кальцинированной соды 0,19; условного топлива 1,1—1,2; электроэнергии ~ 800 кВт • т.

Получение глинозема из нефелинов

Нефелиновый концент­рат или руду и известняк после дробления размалывают в водной среде, получая пульпу для спекания. В связи с наличием в составе нефелина щелочей не требуется добавок в шихту соды.

Спекание производят в отапливаемых трубчатых вращаю­щихся печах диаметром 3—5 и длинрй до 190 м; пульпу зали­вают в печь со стороны выхода газов, где температура рав­на 200—300 °С, а в разгрузочном конце она достигает 1300 °С. В процессе нагрева нефелин взаимодействует с известняком:

(Na, К)2O • Al2O3 • 2SiO2 + 4СаСО3 = (Na, К)2O • Al2O3 + 2(2СаО • SiO2) + 4СO2.

В результате этой реакции входящие в состав нефелина Na2O и К2O обеспечивают перевод глинозема в водораствори­мые алюминаты, а СаО связывает кремнезем в малораствори­мый двухкальциевый силикат. Получаемый спек охлаждают в холодильниках и дробят.

Выщелачиваниенефелинового спека совмещают с его раз­молом и проводят в шаровых или стержневых мельницах в среде горячей воды со щелочным раствором, получаемым пос­ле карбонизации. В процессе выщелачивания алюминаты раст­воряются в воде и остается известково-кремнистый шлам (называемый белитовым), который идет на производство це­мента.

Обескремниваниеалюминатного раствора проходит в две стадии. Первую проводят в автоклавах в течение 1,5—2 ч при температуре 150—170 °С; при этом в осадок выпадают содержащие кремнезем алюмосиликаты, этот осадок (белый шлам) идет в шихту для спекания.

Алюминатный раствор после первой стадии обескремнивания делят на две части. Одну часть далее подвергают кар­бонизации (так, как при переработке бокситов) с последую­щей декомпозицией, после чего получают в осадке гидроок­сид алюмния и содощелочной раствор, идущий на выщелачива­ние спека.

Вторую часть алюминатного раствора дополнительно обескремнивают в мешалках с добавкой извести при ~ 95 °С в течение 1,5—2 ч. При этом в осадок выпадает известково­силикатный шлам и обеспечивается глубокое обескремнивание алюминатного раствора.

Затем этот раствор подвергают кальцинации, получая в осадке гидроксид алюминия и глубо­ко обескремненный содовый раствор, из которого далее в содовом цехе получают поташ (К2СО3) и кальцинированную соду (Na2СO3); глубокое обескремнивание необходимо для получения этих товарных продуктов.

Кальцинация. Гидрооксид алюминия после обеих ветвей переработки алюминатного раствора подвергают промывке и фильтрации и затем направляют на кальцинацию (обезвожива­ние), которую проводят так же, как в способе Байера, по­лучая глинозем.

Примерный расход материалов на получение 1 т глинозема из нефелинов, т: нефелина 4; известняка 7; извести 0,1; условного топлива 1,5; электроэнергии ~ 1000 кВт • ч. При этом получают около 1 т содопродуктов и до 10 т цемента.

Источник: https://metallurgy.zp.ua/proizvodstvo-glinozema/

Как добывается и производится алюминий в промышленных условиях

Производство алюминия из глинозема

К числу наиболее распространенных металлов земной коры относится алюминий.  Этот металл является наиболее легким, а также обладает хорошей теплопроводностью. Хорошо поддается механической обработке литью, хорошо гнется, вторичный по переработке. Его главные физические свойства:

  • Имеет серебристый цвет (с оттенком белого);
  • Легкий;
  • Плотность составляет около 2713 кг на один квадратный метр;
  • Температура кипения от 2518.9 градусов Цельсия;
  • Высокая пластичность до 50%.

Получение алюминия

Залежи глиноземного состава присутствуют практически во всех странах мира. Начальным этапом добычи является Бокситовая руда. Это название получено в честь местности Baux, находящейся на юге Франции. Пятерку лидеров по продаже, а также добычи бокситовой породы заняли следующие страны мира:

  • Россия до 4.5 млн. тонн за год;
  • КНР до 13,50 млн. тонн в год;
  • США до 2,5 млн. тонн за год;
  • Канада до 3,5 млн. тонн в год;
  • Австралия до 2,0 млн. тонн за год.

Помимо этого, сюда вошли:

  • Исландия до 0,50 млн. тонн за год;
  • Таджикистан до 0,43 млн. тонн за год;
  • ОАЭ до 0,90 млн. тонн за год;
  • Германия до 0,56 млн. тонн за год;
  • Бразилия до 1,70 млн. тонн за год;
  • Индия до 1,30 млн. тонн за год.

Металлическая руда разделяется по качеству, а содержание посторонних примесей влияет на критерии востребованности рынка продаж:

  • Повышенное количество серы усложняет процесс переработки вещества в чистый сплав;
  • Большое содержание кремниевого модуля повышает качество продукции;
  • Наличие карбонатов в руде усложняет процесс переработки породы;
  • Наименьшее содержание железа облегчает добычу металла из-под земли.

Химические свойства

Поверхность технического изделия или литейного сплава покрыта невидимой пленкой. Состоит пленка из оксида, который не способен реагировать с внешними природными окислителями: водой или кислородом (H2O, O2). Благодаря этому качеству этот металл не ржавеет.

После процесса рафинирования получают чистый металлический состав. Продукт сегрегации после отливки породы содержит тяжелые элементы. Остаток кристаллического осадка применяется для раскисления металла.

Состав металлической руды:

  • Cu до 0,0005 мг;
  • Mg производный остаток;
  • Fe до 0,0005 мг;
  • Zn до 0,0005 мг;
  • Al производный остаток;
  • Si до 0,005 мг.

Химический состав алюминия по нормам DİN 1712:

Также Al просто реагирует со сложными и другими элементами, образуют различные соединения. Кратко условие соединения такие:

  • Фтор (фторид Al) 2Al+3F2=2AlF3;
  • Углерод (карбид Al) 4Al+3C=Al4C3;
  • Азот (нитрид Al)2Al+N2=2AlN;
  • Вода, щелочь 2Al+6H2O=2Al(OH)3+3H2 и 2AL+2NAOH+6H2O=2Na(AL(OH)4) +3H2;
  • Соляная и серная кислота 2Al+6HCl=2AlCl3+3H2 и 2Al+3H2SO4=Al(SO4)3+3H;
  • Металлы 2Al+Cr2O3=Al2O3+2Cr.

Сырье для производства

В производство алюминия включены следующие категории химических элементов:

Нефелины. Состоят из нефелиновых сиенитов уртитов. Основные компоненты последних: апатит и нефелин. Составные части обрабатывают и получают апатитовый нефелиновый концентрат.

Алунит. Это основной сульфат алюминия и натрия. Представляет собой комплексное сырье, состоящий из серного ангидрида и щелочи.

Криолит. Соединение создают искусственно. Плавиковый шпат разводят с серной кислотой в специальных самоперемешивающихся печах. Образующуюся летучую кремнефтористую кислоту фильтруют с помощью водных башен, установленных над ваннами. После промышленный раствор очищают содой.

Следующая стадия направлена на получения криолита. Плавиковую кислоту разбавляют гидроксидом алюминия и содой, погружают в большие котлы, где происходит выплавка металлической руды. Криолит оседает, далее его фильтруют, просушивают при температуре 150 градусов Цельсия.

Бокситовый сплав состоит из оксидов железа, кремния и гидроксидов алюминия. Данное сырье используют в качестве флюса плавильной металлургии.

Добываемая земля выглядит как глина. Имеет однородную структуру. Часто попадается гороховидный полосчатый рисунок. Тропический климат способствует образованию качественного состава руды. Под высокими температурами минералы земной коры разлагаются, образуя конечный продукт Боксит. Далее полученный состав очищают от примесей газов.

Алюминиевый сплав имеет прочную связь с кислородом, поэтому процесс добычи его из почвы более затруднителен, по сравнению с другими металлами. Чтобы получить нужное соединение, глинозем перерабатывают поэтапно:

  1. Добывают залежи металлической руды;
  2. Из залежей получают глинозем или оксид алюминия;
  3. Далее химический элемент расщепляют в расплавленном электролите.

Последний пункт процесса переработки получил название Холла-Эру в 1886 году. Главными разработчиками современного метода плавления стали Чарльз Холл и Пол Эру.

Читайте также  Сварка тонкого алюминия аргоном

Для производства одной тонны серебристого состава требуется 2000 кг. глинозема, 40 кг. фторида, 70 кг. криолита и около 600 кг. графитовых электродов.

Необходимое оборудование

Литейный завод для обработки алюминия использует технологические разработки:

  • Электролизная ванна (электролизный способ);
  • Сосуд для рафинации.

Электролизеры существуют разных размеров. Выпускаются емкости с само обжигающимся анодом и верхним токоотводом или уже с обожжённым анодом.

Ванна с обожжёнными анодами более мощная и производительная. Она меньше выделяет вредных веществ, чем ее предшественница. По форме это прямоугольное приспособление с днищем внутри глубиной до 0,5 метров.

Электрическая мощность ванны зависит от поступающего тока к ней. Сила тока колеблется от 30 кА до 250 кА. Поверхность стен обтянута кожухом из стали. Внутри дополнительный слой шамота, поверх которого наложены угольные плиты.

Низ так же образован угольными блоками.

Емкость для рафинации напоминает электролитную емкость. Состоит из угольной подины. К сосуду проведены теплоизолирующие футеровки и провода под напряжением. Температура нагрева достигает до +1000 градусов Цельсия.

Помимо электролитов используют охлаждающие печи и сосуды для выпаривания жидкости. На нашем сайте есть подробное видео по производству металлической руды.

Одной из мировых новинок является добыча металла с использованием электрохимического инертного анода. Эта технология не выбрасывает в атмосферу углекислый газ, а наоборот выделяет чистый кислород. Одна емкость может произвести более 8000 тонн кислорода в год. В настоящее время в промышленности осуществляется запуск нового оборудования.

Процесс электролиза

Электролитическое восстановление происходит путем размещения металлической породы глинозема в электролиз каждые пол часа. Там при температуре около 1000 градусов Цельсия обжигается сырье. Промышленные масштабы позволяют использовать ванны с обожжёнными анодами для металлической руды:

  • Сырье погружают в сосуд, где происходит реакция алюмелевой руды;
  • Из окиси алюминия образуется хлорид алюминия;
  • Соединение хлора фильтруется;
  • Металл оседает на катоде.

Ванны без применения жидкого криолита экономят до 35% энергии, а также позволяют уменьшить расходы на дорогостоящий электрохимический криолит.

Рафинация металла

В ванну для рафинирования погружают алюминиевою породу после чего она делится на три составные части:

  • Расплавленный глинозем (нижний слой);
  • Электролит, состоящий из смеси хлорида бария, фторидов или натрия;
  • Металлическая пленка (верхний слой).

Состав анода таков: никель, марганец, свинец или олово. Допускается незначительное присутствие магния, который отсеивается хлором флюсом. В конечном результате получается 99,9% алюминий.

Металлический элемент применяют для создания транспортных средств, возведения зданий или сооружений, а также конструирования электронных приборов или электрической проводки. Металл обладает сохранением своих первоначальных качеств, что позволяет использовать состав в производстве повторно.

Разрабатываются новые технологии выплавки металлических сплавов, позволяющие экономично расходовать электроэнергию, а также мировые запасы руды.

Источник: https://oxmetall.ru/metalli/alyuminij/kak-proizvoditsya-alyuminij

Технология производства алюминия

Получение алюминия включает такие технологические процессы:

  • добыча бокситов
  • добыча глинозема (окись алюминия) из алюминиевых руд (бокситов)
  • выделение из окиси алюминия.
  • конечная очистка алюминия.

Из 4-5 тонн бокситов можно получить около 2 тонн глинозема, из которых в итоге дальнейшей переработки получится 1 тонна алюминия.производство алюминия начинается с добычи алюминиевых руд, которых в природе существует несколько видов. Однако главным сырьем для получения металла является именно боксит.

Боксит является высококачественным, если в его составе присутствует более 50% оксида алюминия.Специалисты предоставляют информацию о количестве 18,6 миллиардов тонн бокситов, которые содержатся в земной коре. Сегодняшний уровень добычи гарантирует, что бокситов хватит еще на 100 лет.

В мире насчитывается семь бокситоносных районов:

  • Западная и Центральная Африка (больше всего в Гвинее)
  • Южная Америка: Бразилия, Венесуэла, Суринам, Гайана
  • Карибский регион: Ямайка
  • Океания и южная часть Азии: Австралия, Индия
  • Китай
  • Средиземноморье: Греция и Турция
  • Урал (Россия).

Бокситы бывают:

  • твердые, с высокой плотностью
  • рыхлые, которые легко рассыпаются. 

Цвет бокситов чаще всего — кирпично-красный, может быть рыжеватый или коричневый вследствие примеси оксида железа. Если железа в породе мало, бокситы будут белого или серого цвета. Однако, попадаются и руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.
Добычу бокситов осуществляют открытым методом.

Особые машины «срезают» руду слой за слоем с поверхности земли и перевозят в пункт дальнейшей переработки. Но существуют на Земле и участки, в которых алюминиевая руда залегает на большой глубине. В таком случае, чтобы добыть руду, строят шахты. Самая глубокая шахта «Черемуховская-Глубокая» расположена в России, на Урале, ее глубина достигает 1550 метров.

Создание глинозема

Дальнейший процесс производства алюминия подразумевает получение глинозема, кислотным, щелочным и электролитическим способом. Кислотный метод применяется в работе с высокими сортами сырья.

В процессе щелочного метода происходит разложение алюминиевого раствора под действием введенной алюминиевой гидроокиси. После этого раствор выпаривают.
Наиболее востребованным можно назвать щелочной метод.

Известно, что алюминиевый раствор практически моментально начинают разлагаться, если ввести в него гидроокись алюминия. Этот метод состоит из двух этапов:

  • подготовка боксита. Происходит дробление руды. Ее измельчают в особых мельницах. В мельницы добавляют едкую щелочь, боксит и небольшое количество извести. Получившуюся пульпу отправляют на выщелачивание
  • выщелачивание боксита фактически является его химическим разложением при соприкосновении с водным раствором щелочи. В этой реакции гидраты окиси алюминия вступая в реакцию со щелочью переходят в раствор в виде алюмината натрия, а кремнезем, содержащийся в боксите, реагируя со щелочью, поступает в раствор в виде силиката натрия. Эти соединения реагируя между собой образуют нерастворимый натриевый алюмосиликат. В этом остатке содержатся окислы железа и титана, предающие остатку красный цвет. Этот остаток называют красным шламом. Красный шлам отделяют от алюминатного раствора при помощи промывки в сгустителях. При этом красный шлам выпадает в осадок, а оставшийся алюминатный раствор подвергают фильтрованию.

Фильтрация подразумевает отправление раствора в крупные емкости с мешалками. Из этого раствора, охлажденного до 60°С, при постоянном перемешивании получают гидроокись алюминия. В эти емкости с мешалками необходимо обязательно добавить большое количество твердой гидроокиси.
Самой последней стадией является обезвоживание гидроокиси алюминия. Ее осуществляют в трубчатых, постоянно вращающихся печах.

Электролиз и рафинация

Металлургическое производство алюминия продолжается при загрузке в электролизер анодной массы, глинозема, а также фторсоли. В процессе электролиза из глины выделяются окислы углерода, а также фтористые вещества в газообразном состоянии.

В то же время определенный объем анодной массы расходуется как пена, которую снимают с поверхности самого электролита.Теоретически, чтобы получить 1 кг алюминия необходимо 1,9 кг глинозема. В остальной его части находятся различные примеси. Тем не менее, практика показывает, что сырья затрачивается намного больше.

Все зависит от типа глины, применяемого оснащения и ряда других факторов.В процессе электролиза основным аппаратом является особая ванна (электролизер), в которой имеются углеродистые блоки.

К ванне подведен электрический ток мощностью до 150000 А, а в самой емкости размещены угольные аноды, которые сгорают в конце выделения чистого кислорода и формирующие окись углерода.

Аноды бывают двух видов:

  • полученные при помощи обжига угольных блоков, вес которых превышает 1 тонну
  • самообжигающиеся, которые включают в себя угольные брикеты, подвергающиеся распеканию в процессе электролиза.

Электролиз окиси алюминия осуществляется в условиях температуры в электролизере около 970°С. Алюминий оседает на катоде. В завершении этого этапа алюминий приобретает товарный вид, к примеру, слитки, чушки или проволока.

Центры производства алюминия

Самым крупным производителем алюминия можно назвать компанию «Русал», производящую свыше 4 млн. т алюминия ежегодно.

Кроме этого, в перечень самых крупных изготовителей алюминия в России внесены:

  • Братский алюминиевый завод, создающий 30% российского алюминия и 4% мирового. Предприятие использует 75% электроэнергии, создаваемой на Братской ГЭС
  • предприятие «СУАЛ», которые специализируются на работе с алюминиевыми сплавами
  • компания АО «БАЗ», функционирующая на производстве и добыче глинозема и гидроксида алюминия
  • ВгАЗ — предприятие по изготовлению первичного алюминия.

Согласно информации геологической службы США, в 2016 году первое место в мире по производству алюминия занимал Китай. На втором месте – Россия, на третьем Канада.

Перечень предприятий алюминиевой промышленности Российской Федерации

Завод

Место расположения

Год ввода в эксплуатацию

КАЗ
Филиал ОАО «СУАЛ» «КАЗ-СУАЛ»

Мурманская область, г.Кандалакша

1951

НкАЗ
ОАО «РУСАЛ Новокузнецк»

Кемеровская область, г.Новокузнецк

1943

КрАЗ
ОАО «РУСАЛ Красноярск»

Красноярский край, г.Красноярск

1964

БрАЗ
ОАО «РУСАЛ Братск»

Иркутская область, г.Братск

1966

САЗ
АО «РУСАЛ Саяногорск»

Республика Хакасия, г.Саяногорск

1985, 2006

ИркАЗ
Филиал ОАО «РУСАЛ Братск» в г.Шелехове

Иркутская область, г.Шелехов

1960

НАЗ
Филиал ОАО «СУАЛ» «НАЗ-СУАЛ»

Республика Карелия, п.Надвоицы

1954

ВгАЗ
Филиал ОАО «СУАЛ» «ВгАЗ-СУАЛ»

г.Волгоград

1959

БоАЗ
ЗАО «Богучанский алюминиевый завод»

Красноярский край, Богучанский район

2015

АГК
ОАО «РУСАЛ Ачинск»

Красноярский край, г.Ачинск

1970

Пикалевский глиноземный завод
(«Базэл Цемент Пикалево»)

Ленинградская область, г.Пикалево

1959

БАЗ
Филиал ОАО «СУАЛ» «БАЗ-СУАЛ»

Свердловская область, г.Краснотурьинск

1943

УАЗ
Филиал ОАО «СУАЛ» «УАЗ-СУАЛ»

Свердловская область, г.Каменск-Уральский

1939

Источник: http://mining-prom.ru/cvetmet/alyuminiy/proizvodstvo-alyuminiya/