Обработка листового алюминия

Содержание

Способы и приспособления для резки алюминия

Обработка листового алюминия

[Резку алюминия можно выполнять по различным технологиям], которые применяют к материалу, в зависимости от его технических параметров и объемов предстоящих работ.

Например, если толщина алюминиевых листов минимальна, можно выполнить их обработку обычными ножницами по металлу.

Но при больших и ежедневных объемах работ с необходимостью делать большое количество разрезов уместно применить другие, более серьезные типы устройств.

В зависимости от толщины металлических листов, для их резки может использоваться болгарка, фрезерная или гидроабразивная установка.

Также работа может выполняться с помощью гильотины или плазмореза.

Для очень качественной серийной резки алюминия применяют станок с ЧПУ – числовым программным управлением.

Исходя из этого, есть смысл рассмотреть каждую технологию резки алюминия по отдельности.

Особенности плазменной резки алюминия

Плазменная резка алюминия – идеальный вариант получить высокое качество среза цветного металла.

При этом для образования плазмы, необходимой для обработки листов алюминия и его сплавов, используются только неактивные газы: водородный, аргоновый или азотный.

Активные газы, такие как воздух и кислород, – предназначены образовывать плазму для резки черного металла.

С применением сжатого воздуха плазморезом обрабатывают алюминий и алюминиевые сплавы, при условии, что толщина изделий не превышает 70 мм.

Не рекомендуется использовать для плазменной резки алюминия газовую смесь, сочетающую азот с аргоном, так как она предназначена для резки 50-ти мм высоколегированной стали.

Применение чистого азотного газа возможно для резки алюминия с толщиной заготовки до 20 мм.

А вот азот в сочетании с водородом, позволит обработать алюминий и его различные сплавы, с толщиной 100 мм.

:

Аргоновый газ с водородом, может применяться для резки алюминиевых материалов, с толщиной более 100 мм.

При этом содержание водорода в аргоновом газе не должно быть более 20%, что хорошо отразиться на стабильности горящей дуги.

Особенности гидроабразивной резки алюминия

С помощью резки алюминия плазморезом по гидроабразивной технологии можно получить нужные заготовки с отличным качеством среза, со средними параметрами шероховатости кромки.

READ  Продольная резка металла — станки, линии, агрегаты

Гидроабразивная резка алюминия происходит с минимальными потерями, несмотря на теплопроводность алюминия, является пожаро- и взрывобезопасной.

Гидроабразивная резка алюминия основывается на применении в технологическом процессе специально очищенной воды и абразивных зерен, категория которых подбирается с учетом характеристик обрабатываемого металла и типа работ (в каких условиях проводятся).

Под воздействием водоструйной технологии удается разрезать металлические материалы с толщиной до 300 мм, что позволяет соединять тонколистовые изделия в общую упаковку и обрабатывать их за один этап.

Кроме того, гидроабразивная резка алюминиевого материала и его сплавов дает возможность выполнять высокоточное разрезание изделий со сложными формами.

А это значит, что качественного результата можно добиться даже при формировании внутренних радиусов, скосов и острых углов.

:

Гидроабразивная резка – экологически безопасная технология, отличает ее отсутствие пыли, щепок и химических микрочастиц.

При необходимости серийной резки алюминия, используют гидроабразивный станок с ЧПУ. Наличие программного обеспечение практические не требует вмешательства оператора в рабочий процесс.

В данном случае резка металла происходит строго по заданной программе.

Особенности фрезерной резки алюминия

Фрезерная резка алюминия позволяет проводить работы с изделиями любых конфигураций, включая винтовую поверхность.

При этом фрезерная установка должна быть настроена именно на работу с алюминием, а не с каким-либо другим металлом.

Сюда входит тип фрезы, регулировка частоты оборотов фрезы, период подачи рабочей плоскости или режущего инструмента.

Объясняются данные требования повышенной пластичностью алюминия, ведь даже его фрезерная обработка на установках с ЧПУ проходит с риском, что на поверхности металла, особенно в процессе крепления, появятся какие-либо дефекты.

И все же фрезерная обработка алюминия, с применением станков ЧПУ, незаменима при необходимости получить высокое качество продукции и повысить производительность труда.

Фрезерная обработка листового материала, с применением станков ЧПУ, может использоваться для металла с толщиной от 3 мм до 280 мм.

Кроме того, станок с числовым программным управлением – идеальный вариант для воссоздания копий с электронных чертежей.

READ  Технология лазерной резки металла

:

Фрезерный станок с ЧПУ позволяет с точностью изготавливать элементы различного назначения с минимально допустимой погрешностью.

В последнее время начала пользоваться спросом фрезерная 3D установка с ЧПУ.

Такой станок позволяет получить готовые 3D изделия различных конфигураций, его используют для изготовления форм для литья, различного рода рекламных вывесок с объемными символами и фигурками.

Особенности резки алюминия на гильотине

С применением гильотины выполняют резку алюминиевого листового материала.

Гильотина представляет собой тип кузнечно-прессовой установки, при этом установка может эксплуатироваться в ручном, механическом и гидравлическом режиме.

Эксплуатация механической гильотины основывается на использовании системы кинематической цепочки, в то время как функционирование гидравлической гильотины происходит за счет рабочей жидкости.

Ручные гильотины легко выполняют резку тонких листов алюминия, в действие установка приходит за счет простого рычажно-пружинного механизма.

:

Подобные гильотинные ножницы удобны в домашнем использовании, так как имеют компактные размеры и не требуют много места для установки.

Гильотины с механическим управлением вводятся в действие за счет электропитания.

Резку алюминия и прочих металлов подобные устройства выполняют с допустимыми отклонениями, поэтому не могут обеспечить идеально точный разрез материала.

Высокоточные разрезы возможны с применением только гидравлических гильотин, они имеют внушительную конструкцию и встроенную заднюю линейку, которая способствует точности выполняемых процессов.

Модификация гидравлических гильотинных установок, в ходе которой произошла замена имеющихся двигателей на новые, более мощные, позволяет осуществлять резку алюминия любой толщины.

Особенности резки алюминия болгаркой

С помощью болгарки выполнить высокоточную резку мягких металлов сложно, особенно это касается алюминия. Вязкий по своей структуре материал в процессе работы вызывает трудности и требует применения специфических действий.

Например, чтобы разрезать листовое изделие или какую-либо алюминиевую заготовку с большой толщиной, на рабочий шов капают керосин.

:

В данном случае, керосин выступает в качестве смазки и не дает, чтобы отрезной круг болгарки увяз в металле.

При работе болгаркой необходимо строго соблюдать правила безопасности и все время контролировать, чтобы за счет керосина не появилось возгорание.

READ  Технология гидроабразивной резки металла

Приобретая диск для болгарки, необходимо знать, для обработки какого материала этот круг предназначен.

В противном случае, неправильно подобранный круг, не только не выполнит поставленную задачу, но может стать причиной неожиданной травмы.

Поэтому выбирая отрезной круг для распиловки алюминия, рекомендуется обращать внимание на его лицевую поверхность.

Именно на ней производитель указывает, какой диаметр имеет изделие, для обработки какого материала круг предназначен.

Помимо этого, отрезной круг для болгарки имеет обозначение размера посадочного отверстия, а также указание разрешенного количества оборотов, другие отметки по особенностям эксплуатации.

Очень важно в процессе работы болгаркой не забывать, что на круг можно воздействовать только радиальным усилием.

Особенности резки алюминия дисковой пилой

Дисковая пила является рабочим элементом станка для резки алюминия и другого металла.

При этом пильный диск в конструкции таких станков может быть не один, и иметь различную форму зубов. Все зависит от назначения, которое при производстве получил пильный диск.

Такие пилы бывают фронтальными, вырубными или походят на настольную пилу.

:

За счет присутствия в конструкции станка вспомогательных приспособлений, в процессе эксплуатации движения диска пилы обеспечивается плавным ходом.

Дополнительные приспособления позволяют выполнить обработку металла с изменением угла, а благодаря пневмозажимам, позволяют фиксировать заготовки в различных положениях.

Вырубные пилы применяют для резки алюминия одновременно в двух плоскостях.

Один диск вырубной пилы располагается перпендикулярно второму, что позволяет выполнять в металлическом изделии вырезы с различными контурами.

При этом пильный диск, как первый, так и второй, может менять свое положение в пределах от -450 до +450.

Диск для распиловки алюминия с применением установки дисковой пилы выбирают с диаметром 160-600 мм.

При этом чаще всего используют пильный алмазный диск с диаметром 350, 420-450 и 550 мм.

Источник: https://rezhemmetall.ru/rezka-alyuminiya-texnologii-i-oborudovanie.html

Резка алюминия в размер: плит, листов, кругов, прутков, бокса. Цены в Москве

Обработка листового алюминия

Наша компания не только реализует алюминиевый прокат в любом количестве, но и осуществляет его обработку — раскрой материала, снятие фасок, прорезание отверстий и другие технологические операции.

Перечень обрабатываемых сплавов из алюминия включает все известные маркировки и состояния поставки. Используется современное высокотехнологичное оборудование, учитываются особенности материала.

Качество работ отвечает отечественным и международным стандартам.

Резка алюминиевого проката

Выполняем резку проката из алюминиевых сплавов любых марок во всех состояниях поставки и диапазонах толщин. Осуществляем раскрой материала, изготовление отверстий, фасок и т. д. При обработке учитываем особенности алюминиевых сплавов: их пластичность, легкоплавкость и химическую активность при повышенных температурах. Точностью и оперативность выполнения гарантируются.

Читайте также  Можно ли варить алюминий инвертором?

Алюминиевых плит

Алюминиевые плиты в соответствии с ГОСТ 17232-99 обладают толщиной 11-200 мм. С раскроем полуфабрикатов таких габаритов эффективно справляются при помощи плазменной и гидроабразивной резки.

Эти методы позволяют получить ровный срез, не требующий дополнительной обработки, при минимальном количестве отходов и исключительной производительности.

Высокая теплопроводность алюминия облегчает задачу охлаждения зоны термического влияния для массивных заготовок.

Листового алюминия

Листы алюминия по толщине не превышают 10 мм. В этом случае выбор метода обработки определяется задачей, стоящей перед мастером:

  • несложный раскрой заготовок малой толщины обеспечивается на гильотине;
  • серийное изготовление изделий с повышенными требованиями к точности формируемой резанием поверхности предполагает использование автоматизированных технологий гидроабразивной резки, лазерной или плазменной;
  • приведенные в предыдущем пункте методы позволяют получить изделия со сложными контурами.

Охлаждение материала в случае применения методов термической резки позволяет избегать коробления или оплавления продукции.

Кругов алюминия

Круги (цилиндрические заготовки) по ГОСТ 21488-97 могут достигать диаметра 300 мм. Способ раскроя проката круглого сечения выбирается в зависимости от его толщины. Заготовки малой толщины разделяют преимущественно механическими способами резания — дисковой пилой или на ленточнопильном станке.

Алюминиевых прутков

Прутки аналогичны по форме кругам, но их диаметр сечения до 80 мм. С задачей резания заготовок такого рода справляются при помощи механической рубки. Изделия с нанесённым покрытием обрабатываются в соответствии с предписанием производителя.

Лазерная резка

Метод осуществляется при помощи лазерного резонатора, генерирующего узконаправленный луч с заданной длиной волны. Энергия луча, сконцентрированная на малом участке обрабатываемого материала, приводит к его расплавлению строго по линии реза.

Преимущества резки алюминиевого проката лазером:

  • высокая производительность;
  • обеспечение точных размеров изделия без последующей доводки;
  • гибкость – широкие возможности для изготовления фигурных изделий;
  • отсутствие деформаций в области среза.

Чаще всего, лазерная обработка используется для выполнения в металле сложных отверстий, с высокой точностью по допуску и посадке. Контакта со сплавом в процессе не происходит, металл не деформируется. Технология заключается в передаче импульсного излучения лазерного луча, генерируемого волоконной, газовой или углекислотной лазерной установкой.

Плазменная резка

Поток плазмы создаётся в результате ионизации электрической дугой газового потока, нагнетаемого под давлением. Ионизированный газ (для алюминия применяют исключительно неактивные — водород, азот, аргон) достигает температур порядка нескольких тысяч оС. Термическое воздействие кратковременно, расплавленный металл мгновенно устраняется из области резания.

Преимущества плазменной резки металлов:

  • экономичность;
  • толщина до 200 мм и более;
  • высокая производительность;
  • широкий спектр обрабатываемых металлов и сплавов;
  • превосходное качество изделий;
  • возможность получения продукции сложной формы для серийного производства или по индивидуальному заказу.

Выбор газа для плазменной резки алюминия производят с учётом толщины: до 20 мм — азот, до 100 мм — азот-водородная композиция, свыше 100 мм — аргон в сочетании с водородом.

Гидроабразивная резка

Вода, подаваемая через узкое сопло инструмента под высоким давлением, обогащённая мелкодисперсными абразивными частицами, выполняет функцию резака. При этом температура в зоне обработки не превышает 60-90С.

Преимущества гидроабразивной резки:

  • высокое качество поверхности кромок (шероховатость Ra 1,6…6,3 мкм);
  • возможность одновременной обработки нескольких заготовок;
  • программируемая траектория перемещения инструмента позволяет получить воспроизводимый сложный контур;
  • сохранение напылений, покрытий;
  • отсутствие оплавления металла;
  • взрыво- и пожаробезопасность, экологичность.

При помощи гидроабразивного станка можно осуществлять раскрой и вырезание отверстий в заготовках толщиной до 300 мм.

Рубка алюминия

Это один из наиболее простых, надежных и точных методов раскроя. Высокая производительность, точность, отсутствие неровностей и шероховатостей. Рубка может быть выполнена для листов, кругов, полос, плит и других видов проката. Механическая рубка выполняется на гильотине, которая способна быстро и качественно отрубить нужную часть изделия от заготовки.

Преимущества рубки алюминия:

  • высокая производительность;
  • низкая энергоемкость;
  • отсутствие термического воздействия на структуру материала;
  • пожарная безопасность, экологичность;
  • экономичность.

Рубка прутков и листов из алюминия — лучший метод осуществления несложного раскроя в отсутствие высоких требований к точности обработки.

Заказать резку алюминиевого проката в Москве

Заказать и получить обработанный алюминий в Москве Вы можете на нашем складе по указанному адресу: 111123, г. Москва, ш. Энтузиастов, д. 56, стр. 44

Забрать оплаченный товар можно путем самовывоза или с помощью доставки, которую осуществит наша компания. Собственный автопарк, состоящий из автомобилей различной тоннажности, позволит нам недорого и оперативно доставить заказ до Вашего объекта.

При заказе продукции от 100 кг. доставка будет для Вас бесплатной.
Отгрузка и доставка оплаченного товара производится в течение одних суток.

Телефон отдела продаж в Москве: +7 (495) 662-73-93

Телефон отдела продаж в регионах: 8-800-200-73-93

Электронная почта отдела продаж: info@rtg-mps.ru

Источник: https://rtg-mps.ru/metalloobrabotka/rezka-alyuminiya

Режем алюминий плазмой, 6 удивительных достоинств метода!

Обработка листового алюминия

Здравствуйте, коллеги! Резка листового алюминия осуществляется с целью раскроя металлического листа на детали. Благодаря этому процессу удается получить заготовку, полностью соответствующую заданным параметрам, сделать раскрой практически безотходным, изготовить детали нестандартных форм и размеров.

Резка металла плазмой: технология

В разное время для порезки листового алюминия было приспособлено множество механических и тепловых технологий – металл резали и продолжают резать при помощи таких видов станков:

  • токарные;
  • фрезеровочные;
  • лазерные;
  • гидроабразивные;
  • газо-кислородные,
  • отрезные,
  • расточные;
  • гильотины.

Подробнее мы рассказывали о них в этом посте.

Необходимую форму деталям также придавали при помощи буровых прессов, сверлильных, втулочных станков, другого специализированного оборудования.

У всех этих способов есть масса как достоинств, так и недостатков, однако на сегодняшний день все они считаются устаревшими, хоть и продолжают применяться на многих предприятиях. Самой совершенной и современной является плазменная резка алюминия и других металлов, например нержавейки, предоставляемая компанией «Новый профиль». Достоинства метода становятся наиболее очевидными именно при работе с мягкими металлами и сплавами.

При резке используется аппарат с числовым программным управлением (ЧПУ).

Технология метода заключается в использовании газа, нагретого до температуры 5000-30000°С и при помощи электрода, обогащенного электрически заряженными частицами.

Для резки алюминиевого листа, как и для плазменной обработки прочих цветных металлов, используется один из неактивных плазмообразующих газов (водород, азот, аргон). Струя газа направляется на лист сквозь электрическую дугу, в результате чего получается безупречный срез.

Плазменная резка алюминия: преимущества метода

По сравнению с лазерной и другими видами резки металла плазменный метод имеет ряд неоспоримых преимуществ, благодаря которым все больше производителей предпочитают его другим разновидностям обработки черных и цветных металлов:

  1. Качество и высокая точность реза: срез алюминия после обработки его аппаратом практически не имеет окалины, что повышает точность параметров получаемой заготовки. Отличное качество деталей обеспечивается дополнительно высокой скоростью процесса, которая снижает до минимума нагрев листа – этот фактор помогает избежать деформации даже самого тонкого сырья. Низкая температура рабочего процесса сделала реальной аккуратную обработку даже листов толщиной 1-6 мм (что абсолютно невозможно при работе с тонким листовым алюминием на кислородно-газовом станке, поскольку ведет к перегреву и деформации листа). Это делает производство практически безотходным, сводит к нулю вероятность получения бракованных деталей, позволяет держать цену на работу минимальной. Кроме того, технология плазменной резки дает возможность обрабатывать одновременно несколько листов.
  2. Легкость управления – благодаря ЧПУ и другим техническим характеристикам аппарата (компактность, хороший обзор для оператора) раскрой металла стал более простым и удобным.
  3. Высокая скорость производственного процесса: по сравнению с кислородно-газовой резкой обработка даже толстого листа (≈25 мм) стала занимать в 12 раз меньше времени, что позволяет максимально повысить производственные мощности.
  4. Экономичность. Изготовление алюминиевых заготовок в пересчете на единицу обходится ниже, чем стоимость лазерной и газо-кислородной резки, в том числе и благодаря отсутствию необходимости в повторной обработке изготовленных деталей. Положительно на себестоимости услуг сказывается и тот факт, что в процессе задействованы лишь электричество и сжатый воздух – это позволяет сэкономить на расходниках (покупка топливного газа, его доставка, погрузка и разгрузка, помещение для хранения, аренда емкостей). Результат – низкая цена заготовок и экономия денег заказчика.
  5. Безопасная технология. Системы плазменной резки с ЧПУ работают без использования горючего газа и потому не обладают повышенной пожароопасностью и травматичностью для операторов устройств, а следовательно не требуют обязательного оформления страховки, как при работе с другими разновидностями станков. Простота операций, компактность оборудования, надежные и безопасные условия работы – эти факторы в значительной мере упрощают резку алюминия, повышают производительность, сводят к нулю вероятность возникновения форс-мажоров, гарантируют бесперебойность работы и ее выполнение в оговоренные сроки.
  6. Широкие возможности: плазма используется для порезки не только алюминия, но и других металлов и сплавов (цветные, черные, нержавеющие).

Весомым аргументом в пользу раскроя алюминия плазмой также является отсутствие необходимости в предварительной подготовке сырья – металл для резки может быть грязным, пыльным, покрытым старой и даже облупившейся краской. Это не окажет никакого влияния на качество и точность резки, погрешность которой составляет всего ±1,2 мм.

Резка листового алюминия в компании «Новый профиль»

Заказывая услугу резки листа алюминия в нашей компании, Вы получаете:

  • быстрое и вежливое обслуживание;
  • экономически обоснованные цены;
  • предельно сниженную стоимость минимального заказа;
  • компетентную консультацию, тщательный предварительный просчет заказа по чертежам;
  • выполнение заказа в короткие сроки;
  • отменное качество полученной продукции;
  • оплату по факту выполненных работ;
  • сотрудничество по всей территории России (Москва, Московская область, другие регионы).

Плазменную резку алюминия компании «Новый профиль», доверяют ведущие российские производители благодаря точности, скорости и надежности работы, которая обеспечивает их высокую производительность и повышение прибыли.

Стоимость наших услуг зависит от длины реза в погонных метрах, толщины металлопроката, сроков исполнения и других индивидуальных нюансов (подробнее, прайс, контакты).

Многие наши клиенты уже давно сделали вывод, что ООО «Новый профиль» использует самую передовую технологию и всегда оказывает качественные услуги по вполне демократичной цене.

Приглашаем к сотрудничеству! Свяжитесь с нами прямо сейчас: 

Тел. 8 (495) 055-25-45,  e-mail: zakaz@rezkamet.ru

С уважением,
ООО «Новый профиль».

Читайте также  Как спаять алюминий и медь?

Источник: http://ramcon.ru/article/metalloobrabotka/plazmennaya-rezka-alyuminiya.html

Финишная обработка поверхности алюминия

Обработка листового алюминия

Алюминий обладает уникальной комбинацией свойств, которая делает его подходящим для множества различных видов продукции:

  • прессованной,
  • прокатной,
  • штампованной,
  • кованой и
  • литой.

Алюминиевые изделия могут составлять сложные системы для применения в различных сферах жизни, в том числе, в строительстве, машиностроении, производстве продукции для отдыха и спорта. Десятки алюминиевых сплавов дают возможность максимально использовать преимущества алюминия для достижения максимальных эксплуатационных характеристик алюминиевых изделий, таких как:

  • необходимая точность размеров;
  • высокий уровень прочности;
  • заданный уровень пластичности и вязкости;
  • коррозионная стойкость в заданных условиях;
  • разнообразный и привлекательный внешний вид;
  • заданный срок службы.

Поэтому алюминий широко применяют как материал для строительных конструкций, таких как:

  • системы навесных фасадов;
  • окна, двери и витрины магазинов;
  • кровля промышленных и гражданских зданий;
  • элементы наружной облицовки зданий;
  • мебель и мебельная фурнитура.

Алюминий как основа для окраски и анодирования

Алюминий и его сплавы имеют преимущество перед другими металлическими материалами в том, что на их поверхности самопроизвольно образуется защитный слой из естественного твердого и инертного оксидного слоя. Это оксидное покрытие формируется на воздухе или насыщенной воздухом воде и мгновенно восстанавливается, если на металле возникают царапины или потертости.

Поэтому поверхность алюминия даже без специальной обработки имеет весьма удовлетворительный внешний вид и достаточно высокую коррозионную стойкость.

 Для многих строительных элементов в умеренных условиях эксплуатации этого оксидного слоя вполне достаточно как с точки зрения внешнего вида, так и с точки зрения стойкости к коррозии.

Еще не так давно, в 1960-1970-е годы, алюминий в состоянии поставки – в прессованном или прокатном — широко применялся в строительстве, особенно в промышленном и сельскохозяйственном.

Современное строительство отличается высокими требованиями к внешнему виду, дизайну и коррозионной защите строительных элементов строительных конструкций. Дизайнеры и архитекторы стремятся к максимальному цветовому разнообразию строительных элементов зданий, наружных и внутренних.

В таких случаях применяют такие способы обработки поверхности алюминиевых полуфабрикатов и изделий, как окраска и анодирование.

Алюминиевые изделия без специальной декоративно-защитной обработки применяют только там, где скорость коррозии алюминия очень низкая, например, в сельских районах, а особые требования к внешнему виду отсутствуют.

Рисунок 1 — Применение окрашенных профилей
в строительстве стеклопрозрачных фасадов

Основными промышленными методами финишной обработки поверхности алюминия – создания защитно-декоративных покрытий – являются:

Обработка поверхности алюминия

Если внешний вид поверхности алюминиевого профиля или листа в том состоянии, в котором они поступают непосредственно после прессования или прокатки, не устраивает архитектора или дизайнера, или, если требуется дополнительная их защита от коррозии, то поверхность алюминия подвергают обработке для создания различных видов покрытий или специальной текстуры.

Наибольшее применение для строительного алюминия получили следующие методы финишной обработки алюминия:

Рисунок 2 — Линия ванн для анодирования алюминиевых профилей

Кроме того, для модифицирования и подготовки поверхности алюминия перед окраской и анодированием применяют следующие обработки поверхности алюминия:

  • Механическая обработка поверхности, в том числе, нанесение текстуры
  • Химическое осветление
  • Травление (щелочное или кислотное)
  • Формирование конверсионных покрытий (хроматных и бесхроматных)

Рисунок 3 — Вертикальная линиядля подготовки поверхности алюминиевых профилей и

их порошкового окрашивания

Факторы качества

Уровень качества защитно-декоративных покрытий – после анодирования, порошковой окраски и жидкой окраски – прямо зависит от качества предварительной подготовки поверхности. Сами процессы анодирования, порошковой окраски и жидкой окраски являются сложными технологиями, которые требуют постоянного внимания и контроля.

Ниже перечислены основные факторы, которые оказывают наибольшее влияние на качество готового защитно-декоративного покрытия.

Химический состав алюминиевого сплава для анодирования

Различные алюминиевые сплавы имеют различные комбинации легирующих элементов.

Различия в содержании некоторых химических элементов, например, меди и железа, могут вызывать различия цвета и текстуры анодного покрытия, даже при совершенно одинаковой технологии анодирования.

Поэтому для анодирования обычно применяют сплавы 6063 и 6060. Сплав 6060 с суженным по сравнению со стандартным сплавом химическим составом даст максимальную однородность цвета и блеска изделий в партии.

Механическая обработка поверхности

Если механическая обработка определена в заказе, то ее выполняют перед химической обработкой или анодированием. Механическую обработку поверхности алюминия проводят для того, чтобы придать ей определенную текстуру или удалить дефекты и неоднородности. В результате механической обработки поверхности получают:

  • однородную матовую анодированную поверхность;
  • анодированную поверхность с направленными или хаотичными «царапинами»;
  • блестящую (зеркальную) анодированную поверхность.

Бесцветное анодное покрытие является прозрачным или полупрозрачным. Поскольку анодные оксиды повторяют текстуру поверхности, то практически все следы механической обработки поверхности будут видны сквозь анодное покрытие.

Примерами механической обработки поверхности алюминия являются:

  • полирование;
  • пескоструйная обработка;
  • шлифование;
  • дробеструйная обработка;
  • обработка металлическими щетками.

Химическая подготовка поверхности для анодирования

Химическая подготовка поверхности алюминия — это применение химических реакций алюминия с различными подходящими химическими реагентами. Щелочное травление дает алюминию в той или иной степени матовую поверхность.

Электрическое или химическое полирование образует блестящую, зеркальную поверхность.

Химическая подготовка поверхности алюминия, которую производят перед анодированием, оказывает определяющее влияние на внешний вид готового анодного покрытия.

Конверсионные покрытия

Перед нанесением на поверхность алюминия порошковой или жидкой краски ее подвергают химической подготовке.

После щелочного обезжиривания и кислотного осветления поверхность алюминиевые изделия поступают на хроматную или бесхроматную обработку, в результате которой формируется конверсионное покрытие.

Это покрытие называют конверсионным, потому, что оно образуется из материала самой поверхности алюминия в результате ее реакции с химическими веществами раствора (хроматными или бесхроматными). Конверсионные покрытия обеспечивают максимальную адгезию краски, порошковой или жидкой.

Источник: http://aluminium-guide.ru/finishnaya-obrabotka-poverxnosti-alyuminiya/

Как обрабатывают алюминий и алиминиевые сплавы?

Обработка листового алюминия

Алюминий – один из самых популярных металлов, из которых изготавливают множество разнообразных деталей. Он легкий, прочный, не поддается коррозии, к тому же, легко обрабатывается.

Обработка алюминия: виды и особенности

Обработка алюминиевых заготовок возможна несколькими способами, в зависимости от поставленных задач и желаемого результата. Чаще всего применяют:

  • химическую полировку;
  • электрохимическую шлифовку;
  • химическое окисление.

Химическая полировка и ее особенности

Химическая полировка позволяет устранить практически любые видимые дефекты поверхности, при этом не повышая ее отражающие способности. Суть процедуры состоит в том, что алюминиевые детали погружают в емкость со специальным составом, под воздействием которого улучшается контур поверхности, неровности становятся менее заметными. Перед погрузкой в алкалиновый раствор все детали тщательно обезжириваются.

Выдерживают детали в растворе от одной до четырех минут. Температура раствора – 100 градусов по Цельсию. После выемки все детали тщательно промывают сначала в горячей, а потом в холодной воде.

Электрохимическая шлифовка и ее особенности

Чаще всего для электрохимической шлифовки алюминиевых заготовок применяется метод BRYTAL, суть которого заключается в том, что каждая деталь сначала обезжиривается, затем аккуратно промывается, после чего погружается в 80-ти градусный раствор, в составе которого присутствует карбонат натрия (15%) и тринатрий фосфат (5%).

Здесь важно оказать двойное воздействие: сначала в результате погружения заготовок в рабочий раствор на 20-30 секунд должен удалиться естественный слой алюминиевого окисла. После этого между катодом и анодом (в качестве которого и выступает алюминиевая деталь) пропускается 24-вольтный разряд, создавая таким образом некую поляризацию.

Анод при этом остается покрытым окисленным слоем, который, в свою очередь, со временем растворяется электролитом. На это ему требуется ориентировочно столько же времени, как и на создание, при этом толщина слоя не растет.

Обработанная таким образом каждая деталь затем просушивается. В результате получается достаточно тонкий окисленный слой. Сам по себе он выступает недостаточно сильной защитой, и часто требует последующего анодирования.

В результате данного процесса поверхность заготовок приобретает светоотражающую поверхность, что ценится, например, при изготовлении параболических фар. Кроме того, такие изделия имеют высокий уровень защиты от износа.

И химическая полировка, и электрохимическая шлифовка отлично справляются с единственной задачей – улучшение эстетических показателей поверхности. При этом обработанная деталь не отличается высоким уровнем защиты. Для этих целей лучше подойдут химическое, а также анодное окисление.

Химическое окисление и его особенности

Воздействие химическим окислителем на любую алюминиевую деталь или сплав данного металла весьма важно с экономической точки зрения. В первую очередь, процесс непременно должен иметь место перед покрытием изделий лаком или краской, в противном случае невозможно достичь нужного уровня сцепления.

Дополнительные преимущества химического окисления:

  • повышает стойкость к коррозии;
  • улучшает износоустойчивость;
  • повышает эстетические качества, включая сохранение металлического блеска.

Самая популярная система химического окисления включает такие этапы:

  • обезжиривание (деталь обрабатывают трихлорэтиленом);
  • промывание каждой запчасти в большом количестве горячей, а потом и холодной воды;
  • погружение заготовок в рабочий раствор: в 10 литрах воды растворяется 500 г карбоната натрия и 150 г хромат натрия.

Время выдержки запчастей в растворе до 15 минут, рабочая температура – 90-95 градусов по Цельсию. После того как алюминий вытащат из раствора, каждую деталь нужно снова тщательно промыть в горячей воде, а затем в холодной.

Во время химического окисления на поверхности заготовок образуется тонкая пленка, состоящая из хрома и алюминий оксидов. Она создает хорошую основу для покрытия краской, лаком, повышает устойчивость к износу и коррозийным процессам.

Анодирование алюминиевых деталей

Анодирование – это процесс, также известный как народное оксидирование, в результате которого на поверхности алюминиевой заготовки появляется оксидное покрытие. Алюминий при этом окисляется, но от окислительных процессов его защищает оксидная пленка.

Такая обработка имеет ряд неоспоримых преимуществ:

  • повышает защитные и декоративные свойства металла;
  • обеспечивает поверхности матовость и однотонность;
  • устраняет механические повреждения, такие как сколы, царапины, трещины;
  • увеличивает толщину защитного слоя.

Обработка алюминиевых заготовок посредством анодирования имеет несколько разновидностей.

  1. Тепловое анодирование отличается достаточно простой технологией, проводится при комнатной температуре и позволяет получить красивое цветное покрытие. При этом используются исключительно органические красители. У умелого специалиста одна и та же деталь может получить несколько цветовых решений. Из недостатков следует отметить тот, что высокой степени защиты от коррозии не достичь.
  2. Холодное анодирование алюминиевых заготовок отличается прочностью и твердостью анодного слоя, отличными показателями износоустойчивости, высоким качеством. Каждая деталь, используемая в рамках данной технологии, должна быть хорошо охлаждена. Такая обработка имеет единственный недостаток – в процессе холодного анодирования невозможно использовать органические красители.
  3. Достаточно прочную и твердую пленку можно получить путем твердого анодирования. Особенность технологии заключается в применении одного из нескольких электролитов: помимо кислоты серной также используется щавелевая, уксусная, винная или борная кислота. Во время процесса плотность тока растет, и, соответственно, пленка повышенной плотности также увеличивается.
Читайте также  Сварочные материалы для сварки алюминия

Для процесса анодирования применяют несколько разных по диаметру алюминиевых ванн (также можно использовать пластик или полипропилен). Главное условие – соблюдение теплоизоляционных свойств ванны.

Механическая обработка алюминия: с какими проблемами можно столкнуться

Мягкий и пластичный алюминий отлично поддается механообработке, но иногда при этом можно столкнуться и с негативными эффектами. У некоторых сплавов отмечается высокая вязкость.

В этом случае при фрезеровке или сверлении может формироваться длинная стружка, которая будет наматываться на рабочий инструмент, приводя его к поломке.

Чтобы минимизировать риск такой неприятности, инструменты для механообработки алюминиевых сплавов следует выбирать с большими стружечными канавками – пусть это ограничит максимальное количество зубцов на фрезе, зато облегчит ход стружки, частично решая проблему.

Источник: https://proflasermet.ru/article/obrabotka-alyminiya/

Алюминиевый рифлёный лист: виды, способы и методы производства алюминиевого листа

Обработка листового алюминия

Развитие технологий в металлургической промышленности позволяет применять металлопрокат в областях, непривычных для использования продукции металлургического производства.

Применение металлических листов в качестве декоративных деталей интерьеров и экстерьеров частных домов и коттеджей, декоративной отделке некоторых деталей легковых автомобилей делает вещи и предметы уникальнее.

Наибольшую популярность приобрёл лист алюминиевый «Квинтет».

Металлические листы служат декоративными элементами для мебели или пьедесталов, подобным материалом широко пользуются дизайнеры.

Рифлёный лист изготавливают из сплава алюминия, дюрали, дополнительно в его состав добавляют медь и магний. Сплав изготовлен по требованию ГОСТ 21631–76 . Металлический прокат выполнен в форме прямоугольника. Сплав проходит процесс закалки, результатом является приобретённая прочность и твёрдость, которые в 7 раз выше в сравнении с обычным состоянием металла.

Вес готового изделия из дюрали в несколько раз уменьшен в сравнении с железом. Это качество алюминия делает его востребованным во многих отраслях и сферах деятельности человека.

Сплав алюминия с внесением добавок позволяет легко нанести на заготовку декоративное или защитное покрытие.

Название алюминиевая заготовка получила из-за своего рисунка, который наносится в виде чередующихся штрихов или полос под строгим углом. Спрос на алюминиевый рифлёный лист обусловлен наличием рифлей и широкой сферой применения.

Рифлёный лист имеет несколько вариантов нанесённых на его поверхность рисунков. Штрихи наносятся и чередуются в шахматном порядке.

  1. Алмаз или даймонд. Рисунок наносится единичным выступом и напоминает форму алмаза.
  2. Дуэт. Рисунок наносится парно, в виде двух штрихов.
  3. Лист алюминиевый рифлёный Квинтет. Рисунок состоит из пяти штрихов, нанесённых параллельно друг другу.

Рифлёный алюминий производят в нескольких марках, наиболее распространены следующие сплавы:

  • Сплав алюминия и 2% магния (не превышая 4%) AMr2. Пластичный и прочный сплав, подлежит соединению при помощи сварки. Обладает стойкостью к воздействию коррозии. Изготовлен сплав в соответствии с ГОСТ 4784–97 .
  • Алюминиевый сплав с марганцем, добавленным не более 1,5%, AMn. Состав металлического изделия по своим свойствам не обладает достаточной прочностью, но устойчив к коррозии и очень пластичен. Изготавливается в соответствии с ГОСТ 4784–97 .
  • Алюминиевый сплав с добавкой меди от 2 до 5% и магния от 0,4 до 1,6%, называется ВД1. Это изделие характеризуется высоким показателем прочности и пластичности. Материал легко при необходимости можно обработать антикоррозийным покрытием. Изготовление производится в соответствии с ГОСТ 1131–76 .

Листы выпускаются в двух размерах: 1200*3000 мм и 1500*3000 мм. Этот размер листов считается универсальным, однако при необходимости и наличии производственных мощностей изготовителя размеры могут увеличиться и составлять от 4 до 6 метров. Производитель может уменьшить размер листа до 2 или 2,5 метров.

Толщина изделия разнится и колеблется в диапазоне от 1,2 до 5 мм.

Вес изделия составляет от 15 до 40 кг.

Методы производства

Помимо дополнительных легирующих добавок, сталь классифицируется по способам производства. Рифлёный алюминий можно изготавливать горячим или холодным прокатом с использованием или без применения плакировки.

Горячекатаный

Прокат горячим способом выполняется в несколько этапов. Сплавы отливают в слитки. Слиток помещают в шахтную печь для последующего плавления и получения жидкой структуры металла.

Жидкий сплав при помощи высокого давления и валов цилиндрической формы проходит раскатку, одновременно с ней наносятся рифли.

Весь процесс проходит в режиме высоких температур, в связи с этим лист приобретает отличную пластичность, но теряет прочность.

Стоимость изделия будет ниже, чем при производстве листов холодным прокатом, потому что мощность производства задействована наименьшая.

У горячекатаного рифлёного изделия есть недостаток: неравная толщина и ширина изделия, которая полностью зависит от равномерного нагрева слитка при плавлении.

Толщина заготовки горячего проката превышает 3 мм.

Холоднокатаный

Способ позволяет получить довольно тонкие листы с рифлями. Нагреву сплав не подвергается, но на производство листов требуются высокие мощности и технологическое оборудование.

Благодаря способу холодного проката можно изготовить изделия равной толщины и ширины.

Плакировка металлопроката

Методом плакировки называют процесс с дополнительным нанесением на лист тонкого слоя чистого алюминия. При процессе плакировки рифлёная заготовка приобретает ещё большую стойкость против процессов коррозии.

Процесс плакировки на готовом изделии маркируется дополнительной буквой к марке листа.

Нормальная плакировка обозначается буквой А. Утолщённая плакировка обозначается буквой У. Буквой Б обозначается технологическая плакировка алюминия.

При отсутствии плакировки будет отсутствовать дополнительная буква в маркировке.

Нормальная плакировка проводится в обязательном порядке при прокате дюралевых сплавов, потому что состав сплава подвержен коррозийным процессам. Лист алюминия плакируется с двух сторон. Толщина алюминиевого слоя равна 2% при условии, что алюминиевая заготовка превышает толщину 1,9 мм. Если эта толщина меньше, то плакирующий слой составит 4%.

Утолщённая плакировка позволит облагородить внешний вид изделия и увеличит его антикоррозийные свойства. Лист с толщиной не более 1,9 мм плакируется слоем алюминия не менее 8% от общей толщины рифлёного алюминия. Если толщина превышает отметку 1,9 мм, слой будет содержать 4% от общей толщины готового изделия.

Технологическая плакировка служит дополнительным слоем, который предотвращает появление трещин и сколов в процессе проката. Этот алюминиевый слой не добавит антикоррозийных качеств готовому изделию. Его толщина не зависит от толщины готового изделия и не может превышать 1,5%.

Типы рифлёных листов с характерной обработкой

Для изготовления рифлёного алюминия применяют различные способы механической и термической обработки. Данные способы позволяют увеличить эксплуатационные качества готового изделия, а также улучшить их технические свойства, это позволит увеличить сферу применения изделий.

Метод и способ обработки алюминия маркируется дополнительной буквой-литерой.

  1. Отожжённый алюминиевый лист. Отжиг проводят с целью снять появившиеся напряжение металла в процессе проката и увеличения пластичности готового изделия. Отжиг выполняют при высокой температуре с последующим постепенным охлаждением. Высокая температура воздействует на сплав в течение длительного времени. Именно отжиг позволит снизить появившуюся излишнюю прочность металла, и тот становится гибким. Процесс отжига маркируется дополнительной буквой М.
  2. Нагартованный алюминиевый лист. Нагартовкой называют обработку изделия, где за счёт применения низкой температуры и высокого давления увеличивается прочность и твёрдость сплава, но снижается его пластичность. Увеличение прочности зависит от марки используемого слитка при прокате листа. Нагартовка обозначается буквой Н.
  3. Полунагартовка алюминиевого листа. Отличие состоит в меньшем механическом воздействии, поэтому прочностные характеристики ниже, а пластичность выше. Маркируются такие рифлёные заготовки буквой Н2.
  4. Рафинирование. Алюминиевый лист подвергается процессам очистки металла от примесей, полученных механическим путём. При очистке используют процесс электролиза.
  5. Закалка алюминиевого листа. Закалка относится к термической обработке. На заготовку воздействует высокая температура, а охлаждение проходит в очень короткий срок по времени. Результатом закалки является приобретённая прочность, которая не позволяет на разрыв нарушить целостность изделия. Закалка проводится совместно с состариванием. Состаривание алюминиевого изделия проводится двумя способами: естественным и искусственным. Естественный способ состаривает металл в течение 5 дней при комнатной температуре. Искусственный способ протекает при температуре 150 °C в течение нескольких часов. Закалённые и естественно состаренные предметы маркируются буквой Т. Закалённые и искусственно состаренные виды алюминиевых заготовок маркируют буквой Т1.

Положительными свойствами алюминия считают его выпуклый рисунок рифлей. Он улучшает внешний вид изделия и физические показатели. Рифлёный лист сохраняет свою геометрию даже в процессе активной эксплуатации, благодаря своей прочности и пластичности он не выгибается.

Наиболее популярный тип алюминиевого листа — это рифлёный Квинтет. Он обладает рядом положительных характеристик:

  1. Длительная устойчивость к коррозии.
  2. Вес изделия небольшой.
  3. Материал экологически чистый и долговечный в использовании.
  4. Использовать его можно в различных температурных условиях и условиях окружающей среды.
  5. Высокие противоскользящие свойства готового изделия.

Область применения

Физические свойства рифлёного алюминия позволяют применять этот материал в автомобильной, строительной, авиапромышленности и многих других сферах деятельности человека.

Квинтет используют внутри и снаружи помещения. Благодаря своим качествам его применяют для внешней отделки помещений. Алюминий служит дорожным ограждением и элементом при изготовлении рекламных щитов. Рифлёным алюминием обустраивают нескользящие переходы и мостики, а также крытые пешеходные переходы.

Рифлёный лист широко используют дизайнеры в оформлении помещений в стилях хай-тек, авангард, лофт и других современных течениях дизайна. Он служит как для деталей внутренней отделки, так и для добавления элементов в предметы мебели и интерьера.

С помощью алюминиевого листа типа квинтет можно оформить перегородки и колонны внутри комнаты. Из него изготавливают экраны для радиаторов, а также столешницы и элементы подвесного потолка.

Алюминиевый лист квинтет является подходящим материалом для изготовления стеллажей для торговых и медицинских предприятий, а также для кухонных помещений детских учреждений и заведений общественного питания.

Для изготовления подножек, ступеней и пола общественного транспорта также наиболее подходящим будет применение алюминиевого квинтета благодаря противоскользящему эффекту.

Квинтет часто используется для тюнинга легковых и грузовых автомобилей. Им дополнительно укрепляют и защищают те детали автомобиля, которые подвергаются воздействию агрессивной среды. Тюнингуются также наиболее износостойкие части кузова автомобиля.

Широко материал применяется при изготовлении морских и речных судов благодаря своим антикоррозийным качествам.

Источник: https://tokar.guru/metally/alyuminiy/alyuminievyy-riflenyy-list-vidy-i-osobennosti-vybora.html