Обработка алюминия на ЧПУ режимы резания

Содержание

Обработка пластика на фрезерно-гравировальном станке чпу

Обработка алюминия на ЧПУ режимы резания
Подробности : 31 августа 2016

:  4 / 5

  • Режимы резания подбираются такими, чтобы исключалась возможность перегреть заготовку. Мягкие материалы, изготавливаемые методом литья, не терпят высоких температур. Оптимальная скорость вращения шпинделя подбирается опытным путем для каждого вида заготовки.
  • Охлаждающая жидкость не требуется, из зоны резания убирается только стружка воздухом под давлением.
  • Прочные виды пластика обрабатываются инструментами с алмазным напылением. Обычные фрезы быстро приходят в негодность от вязкого материала заготовки.
  • Различаются инструменты по виду обработки. При сквозных отверстиях рекомендуется использовать фрезы с отводом стружки вниз. Отличить можно визуально — должна быть левая винтовая канавка. При работе с резцами происходит прижим заготовки к столу, что исключает вероятность вибрации.
  • Пластик довольно прочный материал, но быстрый ход фрезы приводит к появлению трещин на поверхности.
  • Качество обработанной поверхности зависит от выбранного инструмента. Готовые изделия обретают заданную шероховатость, получаются матовыми или с зеркальным эффектом.

Фрезерование пластмасс проходит в различных режимах даже при неизменном материале. Вязкость полученной заготовки на практике отличается у каждой новой партии.

Обороты шпинделя станка с ЧПУ приходится подстраивать по несколько раз за рабочую смену. Контроль качества выпускаемой детали производится по завершении цикла.

Дефектовке подвергаются изделия, имеющие заусенцы, оплавленные части, сколы в пазах, трещины от чрезмерного давления.

Фрезерование мягких изделий делится по способу проведения реза:

  • Фасонное.
  • Концевое.
  • Торцевое.
  • Гравировка.

Гравировка используется для изготовления выпуклых изображений на поверхности заготовки. Фасонное фрезерование пластмасс проводится цилиндрическим или торцевым инструментом. Применяется для получения сложных профилей.

Таким методом изготавливают:

  • шестеренки;
  • зубья;
  • спиралевидные детали.

Фасонное фрезерование широко используется для получения штампов. Сложность реза при обработке заключается в сочетании дуговых окружностей и прямых линий изделия. Фреза проходит траекторию в несколько заходов, повторяя пройденную траекторию для устранения ворсистости.

Концевое фрезерование пластмасс используется там, где требуется получить точные размеры следующих типов:

  • пазов;
  • выступов;
  • канавок;
  • углублений;
  • наклонных плоскостей и скосов.

Торцевое фрезерование пластмасс проводится как черновая обработка поверхности заготовки. Основные крупные детали приобретают ровный срез при первом заходе инструмента, порой качество приближено к идеальному.

Резцы подбираются следующего вида:

  • с углом под 45 градусов из твердосплавных материалов — исключают появление вибрации, не смещают заготовки, легко получить углы в 90 градусов;
  • дисковые трехсторонние — под решение уникальных задач, отличаются высокой скоростью резания без перегрева зоны обработки;
  • концевые — фрезы отличаются формой от винтовых резцов, применяются при изготовлении шпоночных и Т-образных пазов, при зачисткие швов пластиковых окон;
  • с круглыми пластинами — за счет большого количества режущих кромок снижается время процесса обработки, грани пазов получаются плавными с четкими линиями.

Пластики подразделяют в зависимости от устойчивости к высоким температурам:

  • термопласты — обрабатываются на заниженных оборотах шпинделя, тщательно подбирается режим резания: скорость подачи, охлаждение рабочей зоны;
  • реактопласты — устойчивы к нагреву и обрабатываются сухим фрезерованием.

Для термопластов рекомендовано использование одно- или двухзаходных фрез. Поверхности реактопластов получаются качественнее при выборе четырехзаходного инструмента.

Из последних производят детали для бытовой техники, корпуса электрических приборов.

К реактопластам относят:

  • карболит;
  • на основе эпоксидной или карбамидной смолы;
  • фенопласт;
  • полиуретан;
  • полиэфирный прессматериал;
  • ДСВ.

К термопластам относят:

  • ПВХ;
  • полиэтилентерефталат;
  • поликарбонат;
  • полистирол;
  • политетрафторэтилен.

Правила резания пластмасс:

  • Использование твердосплавных фрез, в составе применяются высокоуглеродистые стали.
  • Угол заточки инструмента выбирается малым.
  • Для большинства пластмасс подходят однозаходные фрезы, удаление стружки производится большими частями, что не дает канавкам забиваться. Соответственно соблюдается температурный режим, не требующий интенсивного охлаждения.
  • Листовые заготовки обрабатываются концевыми фрезами с удалением стружки вниз. Так, достигается прижим детали к столу, что исключает появления брака за счет вибрации.
  • Режим реза проводится на низкой подаче, чтобы не обгорали края кромок.

 

Источник: https://cnc-tehnologi.ru/stati/24-obrabotka-plastika-na-frezerno-gravirovalnom-stanke-chpu

Правила выбора режима резания при фрезеровании фрезами — таблицы и советы

Обработка алюминия на ЧПУ режимы резания

На предприятиях, в составе которых есть подразделения, занимающиеся поверхностной обработкой заготовок, на основе нормативных документов составляются специальные карты, которыми руководствуется оператор при изготовлении той или иной детали.

Хотя в некоторых случаях (к примеру, новое оборудование, инструмент) нюансы технологических операций фрезеровщику приходится определять самостоятельно.

Если маломощный станок эксплуатируется в домашних условиях, тем более, никаких официальных подсказок под рукой, как правило, нет.

Эта статья поможет не только понять, на основе чего производится расчет режима резания при фрезеровании и выбор соответствующего инструмента, но и дает практические рекомендации, которые достаточны для обработки деталей на бытовом уровне.

https://www.youtube.com/watch?v=MQKM17fi45o

Особенность фрезерования в том, что режущие кромки вступают в прямой контакт с материалом лишь периодически. Как следствие – вибрации, ударные нагрузки и повышенный износ фрез.

Наиболее эффективным режимом считается такой, при котором оптимально сочетаются следующие параметры – глубина, подача и скорость резания без ухудшения точности и качества обработки.

Именно это позволяет существенно снизить стоимость технологической операции и повысить производительность.

Предусмотреть буквально все нюансы фрезерования невозможно.

Заготовки, подлежащие обработке, отличаются структурой, габаритами и формой; режущие инструменты – своей геометрией, конструктивным исполнением, наличием/отсутствием защитного слоя и тому подобное.

Все, что изложено по режимам резания далее, следует рассматривать всего лишь как некий ориентир. Для уточнения конкретных параметров фрезерования следует пользоваться специальными таблицами и справочными данными.

Выбор инструмента

Главным образом это относится к его диаметру. В чем особенность подбора фрезы (все виды описаны здесь) по этому параметру?

  • Повышение диаметра автоматически приводит к увеличению стоимости инструмента.
  • Взаимозависимость двух показателей – если подача возрастает, то скорость резания падает, так как она ограничивается структурой обрабатываемой детали (см. ниже).

Оптимальным считается такой диаметр фрезы, при котором его величина соответствует (или немного больше) требуемой глубине резания. В некоторых случаях за 1 проход можно выбрать стружку и более толстую, но это относится лишь к материалам, характеризующимся невысокой плотностью. Например, пенопласт или некоторые породы древесины.

Скорость резания

В зависимости от материала образца можно ориентироваться на следующие показатели (м/мин):

  • древесина, термопласты – 300 – 500;
  • ПВХ – 100 – 250;
  • нержавейка – 45 – 95;
  • бронза – 90 – 150;
  • латунь – 130 – 320;
  • бакелит – 40 – 110;
  • алюминий и его сплавы – 200 – 420.

Частота вращения фрезы

Простейшая формула выглядит так:

 n (число оборотов) = 1000 Vc (желаемая скорость реза) / π D (диаметр фрезы). 
Гонять шпиндель на максимальных оборотах с точки зрения безопасности не следует. Значит, только за счет этого скорость резания уменьшится примерно на 10 – 15%.

Частично компенсировать эту «потерю» можно установкой фрезы большего диаметра. Этим скорость несколько повышается. Если подходящей под рукой нет, придется решать – тратить деньги на новый инструмент или довольствоваться теми возможностями, которые имеются у фрезерного станка.

Опять-таки, все это проверяется лишь практикой работы на конкретном оборудовании, но общий смысл рекомендации понятен.

Подача

На этот параметре фрезерования следует обратить пристальное внимание!

Долговечность фрезы и качество обработки заготовки зависят от того, какой толщины слой снимается за одну проходку, то есть при каждом обороте шпинделя. В этом случае говорят о подаче на 1 (2,3) зуба, в зависимости от разновидности инструмента (фреза одно- , двух- или трехзаходная).

Читайте также  Отжиг алюминия режимы

Рекомендуемые значения подачи «на зуб» указываются производителем инструмента. Фрезеровщик по этому пункту режима резания сталкивается с трудностями, если работает с фрезами «made in China» или какого-то сомнительного (неизвестного) происхождения.

В большинстве случаев можно ориентироваться на диапазон подачи (мм) 0,1 – 0,25. Такой режим подходит практически для всех распространенных материалов, подвергающихся обработке фрезерованием. В процессе реза станет понятно, достаточно или несколько «прибавить» (но не раньше, чем после 1-го захода).

А вот менее 0,1 пробовать не стоит, разве только при выполнении ювелирной работы с помощью микрофрез.

Начинать фрезерование следует с минимальной подачи – 0,1. В процессе станет понятно, насколько податлив обрабатываемый материал перед конкретной фрезой. Это исключит вероятность слома режущей кромки (зуба) и позволит поставить возможностям станка и инструмента точный «диагноз», особенно если это «чужое» оборудование.

Полезные советы

  • Превышение значения оптимальной подачи чревато повышением температуры в рабочей области, образованием толстой стружки и быстрой поломкой фрезы. Для инструмента диаметром свыше 3 мм начинать следует с 0,15, не более
  • Если скорость фрезерования детали повысить за счет оптимального использования возможностей оборудования не получается, можно попробовать установить фрезу двухзаходную.
  • При выборе инструмента нужно учитывать, что увеличение длины режущей части приводит к снижению подачи и увеличению вибраций.
  • Не следует стремиться повысить скорость обработки за счет замены фрезы на аналогичную, но с большим количеством зубьев. Стружка от такого инструмента отводится хуже, поэтому часто приводит к тому, что качество фрезерования резко снижается. В некоторых случаях, при полной забивке канавок, фреза начинает работать «вхолостую». Толку от такой замены никакого.

Вывод

Качественного фрезерования можно добиться только опытным путем. Конкретные станок + инструмент + практический опыт, навыки. Поэтому не стоит слепо доверять даже табличным данным.

Например, в них не учитывается степень износа фрезы, с которой предстоит работать. Не нужно бояться экспериментировать, но начинать всегда следует с минимального значения параметров.

Когда мастер «почувствует» и станок, и фрезу, и обрабатываемый материал, он сам определит, в каком режиме стоит работать.

Источник: https://ismith.ru/metalworking/rezhimy-rezaniya-pri-frezerovanii/

Режимы резания при фрезеровании

Обработка алюминия на ЧПУ режимы резания

Выбор режима резания играет основную роль при любой металлорежущей операции, и особенно при фрезеровании. От этого зависит производительность работ, возможность максимального использования ресурсов станка, стойкость инструмента и качество конечного результата. Для выбора режима резания разработаны специальные таблицы, но есть ряд общих понятий, которые необходимо знать любому фрезеровщику.

Особенности фрезерования

Процесс фрезерования является одним их наиболее сложных из всех видов металлообработки.

Основной фактор – это прерывистый характер работы, когда каждый из зубьев инструмента входит в кратковременный контакт с обрабатываемой поверхностью. При этом каждый контакт сопровождается ударной нагрузкой.

Дополнительные факторы сложности – более одной режущей поверхности и образование прерывистой стружки переменной толщины, что может стать серьёзным препятствием для работы. 

Поэтому очень важен правильный подбор режима резания, что позволяет добиться максимальной производительности оборудования. Сюда входит правильный выбор подачи, скорости и силы реза, а также глубины удаляемого слоя что позволяет получить необходимую точность при минимальных затратах и износе инструмента.

Параметры режима резания

Основными характеристиками, которые регулируются в процессе фрезерования и являющиеся составляющими режима резания являются:

  • глубина реза – это толщина металла снимаемая за один проход. Выбирается с учетом припуска на обработку;
  • ширина реза – показатель ширины снимаемого слоя металла по направлению перпендикулярному направлению подачи;
  • подача инструмента – перемещение обрабатываемой поверхности относительно оси фрезы. В расчете режима используются такие показатели как подача на один зуб, в минуту и на один оборот. На величину подачи влияет прочность инструмента и характеристики оборудования.

Ширина и глубина

Данные параметры имеют важное значение для рационального выбора режима фрезерования. Глубина, как правило, устанавливается на максимально допустимое значение для уменьшения количества проходов.

При повышенных требованиях к чистоте и точности обработки применяются черновой и чистовой проходы, соответственно, для съёма основной массы металла и калибровки поверхности.

Количество черновых проходов может быть увеличено для повышения качества реза.

При выборе глубины также необходимо учесть припуск на обработку. Как правило, несколько проходов применяется при значении припуска более 5 мм. При последнем черновом проходе оставляют около 1 мм на чистовую обработку.

При подборе ширины необходимо учесть, что при одновременной обработке нескольких деталей учитывается общее значение. Выбирая данные значения необходимо учесть и состояние поверхности заготовки. При наличии следов литья, окалины или загрязнений необходимо увеличить глубину реза. В противном случае возможно скольжение зуба, дефекты поверхности, быстрый износ режущих кромок.

При выборе глубины реза существуют следующие типовые рекомендации:

  • Чистовая обработка – до 1 мм.
  • Черновая по чугуну и стали – от 5 до 7 мм.
  • Черновая для разных марок стали – от 3 до 5 мм.

Подача и скорость фрезы

Величина подачи зависит, в первую очередь от типа обработки – черновая или чистовая. При чистовом резе подача определяется требованиями к качеству поверхности. При черновом необходимо учесть несколько факторов:

  • жесткость заготовки, инструмента и станка;
  • материал заготовки и фрезы;
  • угол заточки фрез;
  • мощность привода станка.

Скорость обработки определяется по нормативам, в которых учитывается тип инструмента и материал заготовки. Данный параметр выбирается по стандартной таблице.

Необходимо учесть, что значения в таблице приведены для стандартной стойкости инструмента. Если фреза не соответствует стандартным параметрам, то необходимо учесть поправочный коэффициент который зависит от ширины инструмента (для торцовых фрез), свойств заготовки, угла фрезы и наличия окалины.

Рекомендации при выборе режима

Идеально подобрать режим обработки практически невозможно, но есть ряд рекомендаций, которым желательно следовать:

  • Диаметр инструмента должен соответствовать глубине обработки. Это позволяет провести обработку в один проход, но для слишком мягких материалов есть риск снятия стружки большей толщины, чем необходимо. 
  • По причине ударов и вибрации желательно начать с подачи порядка 0,15 мм на зуб и затем регулировать в большую или меньшую сторону.
  • Не желательно использовать максимальное количество оборотов, это может привести к падению скорости реза. Повысить частоту можно при увеличении диаметра инструмента.

Определение режима реза производится не только с помощью таблиц. Большую роль играет знание особенностей станка и личный опыт фрезеровщика.

Источник: https://mekkain.ru/stati/rezhimyi-rezaniya-pri-frezerovanii.html

Механическая обработка алюминия

Обработка алюминия на ЧПУ режимы резания

По сравнению с другими конструкционными материалами алюминий и его сплавы довольно легко поддаются механической обработке.

Механическая обрабатываемость

К механической обработке обычно относят все процессы обработки резанием: токарная обработка, фрезерование, строгание, сверление, пиление и т. д. Поскольку различных алюминиевых сплавов довольно много, то они могут иметь различные характеристики механической обрабатываемости.

Термин обрабатываемость включает все свойства, которые имеют отношение к процессу механической обработки:

  • износ режущего инструмента;
  • необходимая сила резания;
  • форма стружки;
  • качество поверхности после механической обработки.

Механическая обрабатываемость не является такими свойством материала, которое можно было бы определить одним характерным параметром. Она является комплексным технологическим термином. Обрабатываемость зависит как от физических и химических свойств алюминия или алюминиевого сплава, так и от производственного процесса, который применялся при изготовлении алюминиевого полуфабриката или изделия.

Параметры механической обработки

Кинематическое взаимодействие инструмента и детали является решающим критерием процесса механической обработки. Строго говоря, термин « обрабатываемость» должен определяться отдельно для каждого отдельного процесса механической обработки (токарной обработки, сверления и т. д.). Обычно из-за четко определенного взаимодействия инструментов и деталей термин «обрабатываемость» относят к процессу токарной обработки.

https://www.youtube.com/watch?v=awCYmuA8qh0

Каждая технология, которую применяют при механической обработке, зависит от нескольких независимых параметров:

  • параметры резания и геометрия инструмента;
  • применяемое оборудование;
  • материал режущего инструмента.

См. Режущий инструмент для алюминия

Алюминиевая стружка

Форма стружки является важным критерием механической обработке алюминия. Обычно стараются получить короткую цилиндрически свитую стружку, спирально свитую стружку или просто спиральную стружку.

Различных типов алюминиевой стружки довольно много. При большом разнообразии алюминиевых сплавов они могут давать почти все известные формы стружки. Обычно соблюдается следующая закономерность: чем тверже и прочнее алюминиевый сплав, тем короче его стружка. Из нее вытекают следующие общие правила:

  • Чистый алюминий и мягкие деформируемые алюминиевые дают очень длинную стружку, что вынуждает принимать специальные корректирующие меры, например, специальные приспособления для ломки стружки.
  • Высокопрочные алюминиевые сплавы (например, AlMg5, AlMgSi1,0) не представляют никаких проблем по форме стружки;
  • Доэвтектические литейные алюминиевые сплавы (AlSi8Cu3, AlSi10Mg и т. п.) дают короткую стружку кольцевой и спиральной формы, которая легко удаляется.
  • Эвтектические литейные алюминиевые сплавы (AlSi12) склонны образовывать длинную стружку;
  • Заэвтектические литейные алюминиевые сплавы всегда образуют короткую, фрагментированную стружку, которую часто трудно удалять.

Алюминиевые сплавы с улучшенной обрабатываемостью резанием содержат низкоплавкие мягкие металлы, которые способствуют образованию короткой стружки. Обычно – это сплавы с добавками свинца или висмута.

Одним из технологических параметров, которые влияют на форму стружки, является геометрия зуба режущего инструмента. Так, при пониженном переднем угле образуются более короткая стружка в тех сплавах, для которых обычно характерна длинная стружка. Это происходит за счет сжатия стружки (рисунок 1).

Рисунок 1 – Сжатие стружки при большом и малом переднем угле зуба

Качество поверхности при механической обработке

В общем случае качество поверхности, которая образуется при механической обработке алюминия и алюминиевых сплавов, зависит от трех независимых параметров:

  • Кинематическая шероховатость: теоретическая глубина шероховатости (от дна до вершины), которую рассчитывают на основе относительного движения режущего инструмента и детали.
  • Шероховатость механически обработанной поверхности: характерное поведение материала при его механическом разделении, связанное с особенностями его микроструктуры;
  • Внешние воздействия: такие параметры, как устойчивость системы,  состояние режущих кромок и т. п.; эти параметры особенно важны при механической обработке алюминия с большой скоростью резания.
Читайте также  Изготовление пресс форм для литья алюминия

В общем случае влияние материала на степень шероховатости поверхности детали после ее механической обработки, то есть на качество механически обработанной поверхности, зависит от тех же факторов, что и форма стружки.

В отношении деформируемых алюминиевых сплавов эта закономерность выглядит так:

  • чем выше прочность и твердость алюминиевого сплава, который подвергают механической обработке, тем более гладкую поверхность можно на нем получить.

Что касается литейных алюминиевых сплавов, то на их механически обработанную поверхность определенное влияние оказывает их  микроструктура. Твердые частицы, которые внедрены в мягкую матрицу, могут вырываться с образованием грубой поверхности. Тем не менее, в целом, качество поверхности механически обработанной поверхности литейных сплавов также может считаться хорошей и часто очень хорошей.

Группы механической обрабатываемости алюминия

С точки зрения механической обрабатываемости алюминиевые сплавы подразделяют на следующие группы (в порядке повышения трудности механической обработки):

  • Группа 1: Деформируемые алюминиевые сплавы с низкой прочностью;
  • Группа 2.1: Деформируемые алюминиевые сплавы повышенной прочности;
  • Группа 2.2: Алюминиевые сплавы для механической обработки;
  • Группа 3.1: Алюминиево-кремниевые сплавы с содержанием кремния до 10 %;
  • Группа 3.2: Эвтектические алюминиево-кремниевые сплавы;
  • Группа 3.3: Заэвтектические алюминиево-кремниевые сплавы.

Группа 1: Деформируемые алюминиевые сплавы с низкой прочностью

1) Термически неупрочняемые сплавы в отожженном состоянии или частично нагартованном состоянии:

Примеры сплавов:

2) Термически упрочняемые сплавы в несостаренном состоянии:

Примеры сплавов:

Характерные свойства для механической обработки:

  • мягкие,
  • пластичные,
  • низкая прочность,
  • отсутствуют твердые включения,
  • склонность к налипанию на режущей кромке.

Группа 2.1: Деформируемые сплавы повышенной прочности

1) Термически неупрочняемые сплавы в нагартованном состоянии:

Примеры сплавов:

  • AlMn
  • AlMg1, AlMg2, AlMg3, AlMg4, AlMg5
  • AlMgMn
  • AlMg4,5Mn

2) Термически обрабатываемые сплавы в состаренном и/или нагартованном состоянии:

Примеры сплавов:

  • AlCuMg1
  • AlZnMg1
  • AlZnMgCu0,5
  • AlZnMgCu1,5

Характерные свойства для механической обработки:

  • прочность от 300 до 600 Н/мм2 с хорошим удлинением,
  • отсутствуют твердые включения – низкий износ инструмента,
  • снижение склонности к налипанию на режущую кромку с увеличением прочности.

Группа 2.2: Алюминиевые сплавы для механической обработки

Термически обрабатываемые деформируемые сплавы с добавками для ломки стружки

Примеры сплавов:

  • AlMgSiPb
  • AlCuBiPb
  • AlCuMgPb

Характерные свойства для механической обработки:

  • короткая стружка благодаря присутствию добавок Pb и Bi;
  • прочность от 280 до 380 H/мм2;
  • низкая склонность к налипаниям на режущей кромке.

Группа 3.1: Литейные сплавы Al-Si с содержанием кремния до 10 %

1) Сплавы AlSiCu

Примеры сплавов:

  • AlSi5Cu1
  • AlSi6Cu4
  • AlSi8Cu3

2) Сплавы AlSiMg

Примеры сплавов:

Характерные свойства для механической обработки:

  • прочность от 250 до 360 Н/мм2;
  • повышенный износ режущего инструмента из-за твердых компонентов микроструктуры и включений;
  • хорошая ломкость стружки и гладкая поверхность;
  • склонность к налипанию на режущую кромку при содержании аремния более 5 %.

Группа 3.2: Литейные сплавы Al-Si с низкой твердостью

Сплавы Al-Si с содержанием кремния около 12 %

Пример сплава:

AlSi12

Характерные свойства для механической обработки:

  • низкая твердость алюминиевой матрицы;
  • твердые металлические компоненты микроструктуры и включения;
  • высокая склонность к налипанию на режущую кромку.

Группа 3.3: Литейные сплавы Al-Si с высокой твердостью

Сплавы Al-Si с содержанием кремния свыше 12 %

Примеры сплавов:

  • AlSi18CuMgNi
  • AlSi21CuNiMg
  • AlSi25CuMgNi
  • AlSi17Cu4FeMg

Характерные свойства для механической обработки:

  • средняя прочность;
  • высокая твердость;
  • очень низкая пластичность;
  • высокий износ режущего инструмента из-за очень твердых интерметаллических частиц и первичного кремния;
  • высокая склонность к налипанию на режущую кромку.

Источник: TALAT 3100

См. Режущий инструмент для алюминия

Источник: http://aluminium-guide.ru/mexanicheskaya-obrabotka-alyuminiya/

Технология фрезеровки алюминия с ЧПУ и без

Обработка алюминия на ЧПУ режимы резания

В настоящее время [фрезеровка алюминия] является одним из наиболее часто используемых способов обработки данного материала.

Алюминий является тем конструкционным материалом, который нашел широкое применение в самых разных производственных сферах.

Между тем, не часто он используется без проведения предварительной обработки, которая позволяет придать заготовке требуемую форму и нужный размер.

Сегодня именно фрезеровка позволяет выполнить обработку алюминия не только быстро, но и максимально качественно.

Вообще, данный металл обладает целым комплексом уникальных свойств, среди которых можно выделить легкость, прочность, а также отсутствие коррозионных процессов, разрушающих поверхность.

Можно отметить и высокие показатели по тепло- и электропроводности данного материала. Все это и объясняет огромную популярность алюминия в самых разных промышленных сферах.

В настоящее время 3D фрезеровка алюминия может проводиться не только на 3d станках с ЧПУ, но и в домашних условиях ручным способом, при этом, если соблюдать технологию выполнения работ, результат и в том и в другом случае будет на высоком уровне.

Особенности обработки

За счет того, что алюминий обладает повышенной пластичностью, проводить любую его обработку достаточно сложно. Этот процесс требует особого подхода и строго соблюдения установленной последовательности.

Процесс его фрезерования вне зависимости от выбранного способа повышает риск возникновения на поверхности металла различных типов дефектов, таких как вмятины и выбоины.

В этом случае при неправильном выполнении фрезеровки повышается вероятность сильно испортить заготовку. Даже при работе на современном 3d станке с ЧПУ еще на этапе крепления алюминиевой детали на рабочем столе ее можно повредить.

READ  Технология кадмирования металла в домашних условиях

В этом случае специалисты советуют при использовании автоматического оборудования для фрезерования алюминия вместо механического типа крепления детали использовать вакуумный способ фиксации.

Особенно это актуально для тонкостенного листового материала, который к тому же имеет большие размеры.

Следует отметить и то, что алюминий обладает повышенной чувствительность к различным типам вибрации, в том числе и от инструмента. Вибрация так же может стать причиной появления на поверхности алюминия различных видов дефектов.

При работе с алюминием на станке следует с особой точностью подбирать соответствующий режим фрезеровки, чтобы не испортить алюминиевую заготовку.

Также не стоит производить обработку данного типа металла на станках, на которых крепление рабочей фрезы выполнено не по правилам, а также не проведена балансировка цанги.

:

В противном случае поверхность в месте среза не будет ровной и гладкой, а значит, сильно пострадает качество самой детали.

Даже несмотря на то, что алюминий считается относительно податливым к обработке материалом, его фрезеровка считается сложным в техническом плане процессом, даже если используются наиболее максимальные режимы резания.

При фрезеровке алюминия ручным методом в домашних условиях, требования к контролю рабочего процесса только возрастают.

Фрезеровка при помощи станка

Наиболее качественным и вытребованным способом фрезеровки алюминия является его обработка на специальном станке, на котором установлен режущий инструмент, придающий материалу заданные форму и требуемый размер.

Современные 3d агрегаты, оснащенные блоком ЧПУ, позволяют выполнять данный вид обработки с максимальной точностью и высочайшим качеством.

Такие совершенные установки дают возможность выполнить фрезеровку алюминия абсолютно любой сложности, в том числе, получить даже объемный рельеф на поверхности металла.

READ  Технология пескоструйной обработки и очистки металла

Следует отметить и то, что для алюминия именно высокоскоростное фрезерование, которое могут производить 3d агрегаты с блоками ЧПУ, является наиболее предпочтительной и эффективной.

Это связано, прежде всего, с тем, что максимально быстрая скорость вращения шпинделя особым образом сочетается с возможностью в любой момент увеличить глубину резания металла.

Использование для обработки алюминия совершенно новых методов приводит к тому, что в настоящее время регулярно пересматриваются технологические приемы непосредственно самой обработки.

Современные технологии, а также новейшее 3d оборудование с ЧПУ дают возможность производить фрезеровку не только максимально быстро, но и более качественно.

Это дает возможность постепенно отказываться от производства некоторых видов корпусных деталей, успешно заменяя их на более экономичные компоненты со сложной формой.

Это особенно актуально для таких промышленных производств, как авиастроение и автомобилестроение. Также при проведении фрезерования на автоматических агрегатах сегодня большое значение уделяется проблемам вибрации.

В этом случае сегодня станки стараются оснастить более совершенными системами калибровки и контроля качества. Использование ЧПУ значительно расширяет возможности фрезеровального оборудования.

:

Так, при помощи данных блоков есть возможность программировать все операции по обработке алюминия, а кроме этого, получается более качественно контролировать все технические параметры.

Сегодня использование современного оборудования при выполнении фрезеровки алюминия дает возможность добиться высокой точность выполнения работ.

Обработка алюминия в домашних условиях

Несмотря на современные технологии и совершенное оборудование, при определенных условиях фрезеровку алюминия можно выполнить и ручным способом в домашних условиях. Цена вопроса будет состоять из нескольких факторов.

READ  Как сделать улитку для холодной ковки своими руками?

Для этого потребуется простейший электроинструмент, который известен каждому домашнему мастеру и носит название ручной фрезер.

Отсутствие в нем таких обязательных элементов станка, как редуктор и коробка передач в этом случае никак не уменьшает его функциональные возможности в обработке.

Перед началом работ этот инструмент необходимо в обязательном порядке правильно настроить и максимально точно отрегулировать.

https://www.youtube.com/watch?v=jKWwwDpXf0k

Следует отметить, что ручной фрезер позволяет выполнять работу, как в вертикальной, так и в горизонтальной плоскостях, прикладывая при этом минимальные физические усилия.

Читайте также  Сварка алюминия и нержавеющей стали

Также при проведении фрезеровки алюминия следует правильно определить направление движения инструмента.

Для того чтобы добиться качественного результата при проведении фрезеровки алюминия при помощи ручного способа, следует тщательно соблюдать технологию процесса и полностью контролировать рабочий процесс.

Крайне желательно, чтобы у фрезы при фрезеровке алюминия были выставлены небольшие обороты. Это поможет избежать риска того, что металл расплавится, а соответственно деформируется.

:

Необходимо следить и за тем, чтобы на обрабатываемой поверхности не скапливались опилки, которые могут привести к забиванию паза. Работая с ручным инструментом, необходимо выполнять и правила по технике безопасности.

В частности, не начинать работу без защитных очков. В любом случае конечный результат, его качество, а также точность фрезеровки при помощи ручного типа фрезы зависит, главным образом, от опыта домашнего мастера.

Источник: https://rezhemmetall.ru/texnologiya-frezerovki-alyuminiya-s-chpu-i-bez.html

10 полезных советов по резке алюминия на станках с ЧПУ

Обработка алюминия на ЧПУ режимы резания

Чаще всего в интернете можно встретить статьи о работе на станках с ЧПУ по дереву или пластику, тем не менее хорошему станку по зубам и алюминий. Главное знать, как правильно с ним работать.
Есть несколько принципиально важных отличий в работе по алюминию от работ по дереву или пластмассам, о которых необходимо помнить.

Во-первых, пределы оптимального режима резки у алюминия гораздо у?же. При выходе за пределы оптимального режима фрезы начинают изнашиваться гораздо быстрее, а поверхность оставляет желать лучшего. Также надо иметь в виду, что алюминий и его сплавы так и норовят забить наглухо канавки вашего режущего инструмента.

Когда стружка полностью забьёт вашу фрезу, она перестанет резать металл, а при подаче инструмент просто будет давить на заготовку, что приведёт к его поломке. Даже если изначально работа по алюминию может показаться сложной задачей, обрабатывать его можно практически на любом станке с ЧПУ.

В данной статье рассмотрим 10 полезных советов, которые позволят проводить работы правильно и безопасно.

Фрезерование алюминия

1. Не торопиться

Несмотря на то, что станок с ЧПУ может обрабатывать различные металлы, это не самый подходящий инструмент для производства крупногабаритных изделий, например, больших запчастей для автомобиля.

Для качественной резки нужно работать не спеша, просто разрешив машине выполнять своё дело – а в таком случае деталь большого размера будет обрабатываться неоправданно долго.

Вообще обработка металла является весьма серьёзной нагрузкой для станка, поэтому необходимо правильно рассчитывать скорость и глубину резания, величину подачи — согласно характеристикам вашего станка.

2. Использовать калькулятор для расчёта скорости подачи шпинделя

Возьмите на вооружение калькулятор скорости резания и подачи для оптимизации настроек. Не стоит резать «на слух», ни к чему хорошему это не приведёт. Лучше воспользоваться калькуляторами, которые в наше время нетрудно найти на просторах интернета как в виде сайтов с необходимыми полями для заполнения и расчёта в онлайн-режиме, так и отдельных профессионально разработанных программных продуктов.

В идеале следует использовать такой калькулятор, который будет выводить следующие показатели: — Установка нижнего предела минимально возможных оборотов в минуту.

Толку от калькулятора, если он продолжает предлагать вам заниженные обороты чем позволяет ваш станок? — Поддерживать как можно больше типов режущего инструмента: цилиндрические фрезы, торцевые, червячные, концевые, конические, и многие другие; — Учитывать прочность материала на изгиб; — Выводить предупреждения о скорости износа. При работе на низких оборотах и повышенной температуре она значительно возрастает.

— Учитывать утончение стружки: когда вы делаете небольшие надрезы, шириной менее половины диаметра вашего инструмента, это также приводит к повышению износа инструмента. — Возможность по мере необходимости рассчитать сразу несколько режимов работы станка по мощности.

После расчёта режима работы, у вас скорее всего всё же возникнет проблема несоответствия рекомендуемого числа оборотов, так как обычно калькуляторы выдают очень низкие значения. Минимальная скорость большинства станков ограничена, и она зачастую гораздо выше необходимой для резки алюминия, но тем не менее есть способы решить эту проблему иными путями. Следующая пара советов покажет возможные пути решения этой проблемы.

3. Использование фрез с износостойким покрытием

Хорошим вариантом будет использовать фрезы, которые изначально рассчитаны на работу по металлам на высоких скоростях. Обычно это инструмент из твердосплавных материалов. Обычные фрезы из быстрорежущей стали, а также кобальтовые могут оказаться всё же слишком медленными, поэтому следует поискать инструмент с износостойким покрытием типа CC AluSpeed® (TiB2  — диборид титана).

У фрез по алюминию с таким покрытием стружка скользит по поверхности фрезы без прилипания и теплопередачи. Они стоят немного больше, но продуктивность работы и качество изделия это окупят сполна. Допустим у вас в наличии концевая фреза из обычной быстрорежущей стали для которой рекомендуемая скорость вращения шпинделя 3.000 об/мин. А ваш станок имеет минимальную скорость 8.

000 оборотов в минуту (весьма распространенная минимальная скорость для ЧПУ станков). Концевая фреза с покрытием из CC AluSpeed® может иметь рекомендованную скорость в 7.824 об/мин, что гораздо ближе к минимальной скорости станка. Поэтому такой фрезой, в принципе, уже можно смело работать.

Пытайтесь найти концевой инструмент по параметрам наиболее приближенный к скорости вашего станка с ЧПУ, это позволит эффективно обрабатывать ваши заготовки.

4. Работайте фрезами меньшего диаметра

Еще один способ увеличить число оборотов в минуту – работать фрезой малого диаметра. Старайтесь работать фрезами диаметром менее 6 мм.

Важно помнить, что в этом случае следует выбирать фрезы из наиболее жестких материалов, с высокой прочностью на изгиб. Чем меньше диаметр, тем ближе мы можем подобраться к 20.000 об/мин.

Главный принцип – комбинируя различные размеры и режимы работы подобраться как можно ближе к штатным возможностям вашего станка.

Уделите особенное внимание удалению стружки. Наличие стружки в обрабатываемых отверстиях и пазах – верный путь к поломке инструмента. И здесь не стоит сильно надеяться, что встроенная система удаления стружки достаточно хороша, и повышенное внимание не нужно.

6. Следите за глубиной резания – глубокие отверстия очистить тяжелее

Сложность извлечения стружки увеличивается с глубиной резания, поэтому лучше сделайте больше проходов, освобождая больше пространства и работая не очень глубоко, чем пытаться сэкономить немного времени.

7. Не забывайте о смазке

Хорошей идеей будет использование смазочно-охлаждающей жидкости, подаваемой под давлением через распылитель — это позволит избежать как прилипания стружки к фрезе, так и перегрева режущего инструмента. Крайне полезное и, в целом, недорогое решение позволит сделать работу гораздо более комфортной.

8. Не уменьшайте скорость подачи слишком сильно!

Если вы идете слишком медленно, то вы рискуете перейти в такой режим, где инструмент будет больше изнашиваться, чем резать. Подача завязана на обороты шпинделя. Мало просто соблюдать оптимальную скорость резания, нужно еще держать в оптимальных пределах подачу на зуб.

Зоны оптимальных режимов у металлов гораздо уже, чем у дерева или пластика

9. Если станок не может перемещать шпиндель по XY c достаточно большой скоростью, используйте фрезы с меньшим числом зубьев.

При недостаточной скорости подачи для работы с алюминием рекомендуется использовать однозубые и двузубые фрезы с широкими канавками для стружки. А четырех- или более зубыми фрезами работать по алюминию не стоит вообще! Причина заключается в том, что при обработке алюминия образуется очень много крупной стружки.

Чем меньше зубьев, тем больше пространство между режущими кромками, и тем больше места для продуктивного отвода больших кусков стружки. Многозубые же фрезы забиваются стружкой наглухо очень быстро. Следующая вещь, которую следует учитывать — это так называемое «радиальное истончение стружки». Если глубина резания, т.е.

высота области радиального контакта фрезы и заготовки будет меньше радиуса фрезы, это вызовет истончение стружки, и вместо резания начнётся трение и нагревание инструмента, которое в конечном итоге приведёт к преждевременному износу и высокой вероятности поломки.

Последний тип резания постоянно наблюдается при операциях зубофрезерования, поскольку глубина резания при этом относительно небольшая по сравнению с диаметром фрезы. Рекомендации по выбору максимальной толщины стружки обычно приводятся в технических характеристиках режущего инструмента.

10. Не работайте на полной мощности

Теперь, когда усвоено 9 предыдущих советов, можно поговорить о мощности. Машина, работающая на пределе, скорее разрушит режущий инструмент, оставит неудовлетворительное качество поверхности, а точность обработки заготовки будет желать лучшего. Не всегда доступны данные о мощности и жесткости того или иного станка.

Жесткость несущей системы оценивается по величине относительных смещений инструмента и заготовки под действием сил резания. Всё это зависят от величины силы резания, собственной жесткости отдельных узлов станка, контактной жесткости между узлами станка и от порядка расположения этих узлов в пространстве.

При высокоточных работах необходимо оценивать погрешности под действием упругих деформаций, а также необходимо учитывать деформации инструментальной оснастки, приспособления и заготовки.

Элементы технологической системы могут деформироваться по-разному при различном их расположении и разном направлении сил резания, и, если не принимать во внимание этот фактор, могут возникнуть недопустимые погрешности при обработке. Поэтому при изготовлении точных деталей необходимо особенно тщательно провести предварительную оценку упругих деформаций технологической системы.